MINI Sh3ll

Path : /var/www/html/crons/Math/
File Upload :
Current File : /var/www/html/crons/Math/BigInteger.php

<?php

/**
 * Pure-PHP arbitrary precision integer arithmetic library.
 *
 * Supports base-2, base-10, base-16, and base-256 numbers.  Uses the GMP or BCMath extensions, if available,
 * and an internal implementation, otherwise.
 *
 * PHP versions 4 and 5
 *
 * {@internal (all DocBlock comments regarding implementation - such as the one that follows - refer to the
 * {@link MATH_BIGINTEGER_MODE_INTERNAL MATH_BIGINTEGER_MODE_INTERNAL} mode)
 *
 * Math_BigInteger uses base-2**26 to perform operations such as multiplication and division and
 * base-2**52 (ie. two base 2**26 digits) to perform addition and subtraction.  Because the largest possible
 * value when multiplying two base-2**26 numbers together is a base-2**52 number, double precision floating
 * point numbers - numbers that should be supported on most hardware and whose significand is 53 bits - are
 * used.  As a consequence, bitwise operators such as >> and << cannot be used, nor can the modulo operator %,
 * which only supports integers.  Although this fact will slow this library down, the fact that such a high
 * base is being used should more than compensate.
 *
 * Numbers are stored in {@link http://en.wikipedia.org/wiki/Endianness little endian} format.  ie.
 * (new Math_BigInteger(pow(2, 26)))->value = array(0, 1)
 *
 * Useful resources are as follows:
 *
 *  - {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf Handbook of Applied Cryptography (HAC)}
 *  - {@link http://math.libtomcrypt.com/files/tommath.pdf Multi-Precision Math (MPM)}
 *  - Java's BigInteger classes.  See /j2se/src/share/classes/java/math in jdk-1_5_0-src-jrl.zip
 *
 * Here's an example of how to use this library:
 * <code>
 * <?php
 *    include 'Math/BigInteger.php';
 *
 *    $a = new Math_BigInteger(2);
 *    $b = new Math_BigInteger(3);
 *
 *    $c = $a->add($b);
 *
 *    echo $c->toString(); // outputs 5
 * ?>
 * </code>
 *
 * LICENSE: Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 * @category  Math
 * @package   Math_BigInteger
 * @author    Jim Wigginton <[email protected]>
 * @copyright 2006 Jim Wigginton
 * @license   http://www.opensource.org/licenses/mit-license.html  MIT License
 */

/**#@+
 * Reduction constants
 *
 * @access private
 * @see self::_reduce()
 */
/**
 * @see self::_montgomery()
 * @see self::_prepMontgomery()
 */
define('MATH_BIGINTEGER_MONTGOMERY', 0);
/**
 * @see self::_barrett()
 */
define('MATH_BIGINTEGER_BARRETT', 1);
/**
 * @see self::_mod2()
 */
define('MATH_BIGINTEGER_POWEROF2', 2);
/**
 * @see self::_remainder()
 */
define('MATH_BIGINTEGER_CLASSIC', 3);
/**
 * @see self::__clone()
 */
define('MATH_BIGINTEGER_NONE', 4);
/**#@-*/

/**#@+
 * Array constants
 *
 * Rather than create a thousands and thousands of new Math_BigInteger objects in repeated function calls to add() and
 * multiply() or whatever, we'll just work directly on arrays, taking them in as parameters and returning them.
 *
 * @access private
 */
/**
 * $result[MATH_BIGINTEGER_VALUE] contains the value.
 */
define('MATH_BIGINTEGER_VALUE', 0);
/**
 * $result[MATH_BIGINTEGER_SIGN] contains the sign.
 */
define('MATH_BIGINTEGER_SIGN', 1);
/**#@-*/

/**#@+
 * @access private
 * @see self::_montgomery()
 * @see self::_barrett()
 */
/**
 * Cache constants
 *
 * $cache[MATH_BIGINTEGER_VARIABLE] tells us whether or not the cached data is still valid.
 */
define('MATH_BIGINTEGER_VARIABLE', 0);
/**
 * $cache[MATH_BIGINTEGER_DATA] contains the cached data.
 */
define('MATH_BIGINTEGER_DATA', 1);
/**#@-*/

/**#@+
 * Mode constants.
 *
 * @access private
 * @see self::Math_BigInteger()
 */
/**
 * To use the pure-PHP implementation
 */
define('MATH_BIGINTEGER_MODE_INTERNAL', 1);
/**
 * To use the BCMath library
 *
 * (if enabled; otherwise, the internal implementation will be used)
 */
define('MATH_BIGINTEGER_MODE_BCMATH', 2);
/**
 * To use the GMP library
 *
 * (if present; otherwise, either the BCMath or the internal implementation will be used)
 */
define('MATH_BIGINTEGER_MODE_GMP', 3);
/**#@-*/

/**
 * Karatsuba Cutoff
 *
 * At what point do we switch between Karatsuba multiplication and schoolbook long multiplication?
 *
 * @access private
 */
define('MATH_BIGINTEGER_KARATSUBA_CUTOFF', 25);

/**
 * Pure-PHP arbitrary precision integer arithmetic library. Supports base-2, base-10, base-16, and base-256
 * numbers.
 *
 * @package Math_BigInteger
 * @author  Jim Wigginton <[email protected]>
 * @access  public
 */
class Math_BigInteger
{
    /**
     * Holds the BigInteger's value.
     *
     * @var array
     * @access private
     */
    var $value;

    /**
     * Holds the BigInteger's magnitude.
     *
     * @var bool
     * @access private
     */
    var $is_negative = false;

    /**
     * Precision
     *
     * @see self::setPrecision()
     * @access private
     */
    var $precision = -1;

    /**
     * Precision Bitmask
     *
     * @see self::setPrecision()
     * @access private
     */
    var $bitmask = false;

    /**
     * Mode independent value used for serialization.
     *
     * If the bcmath or gmp extensions are installed $this->value will be a non-serializable resource, hence the need for
     * a variable that'll be serializable regardless of whether or not extensions are being used.  Unlike $this->value,
     * however, $this->hex is only calculated when $this->__sleep() is called.
     *
     * @see self::__sleep()
     * @see self::__wakeup()
     * @var string
     * @access private
     */
    var $hex;

    /**
     * Converts base-2, base-10, base-16, and binary strings (base-256) to BigIntegers.
     *
     * If the second parameter - $base - is negative, then it will be assumed that the number's are encoded using
     * two's compliment.  The sole exception to this is -10, which is treated the same as 10 is.
     *
     * Here's an example:
     * <code>
     * <?php
     *    include 'Math/BigInteger.php';
     *
     *    $a = new Math_BigInteger('0x32', 16); // 50 in base-16
     *
     *    echo $a->toString(); // outputs 50
     * ?>
     * </code>
     *
     * @param $x base-10 number or base-$base number if $base set.
     * @param int $base
     * @return Math_BigInteger
     * @access public
     */
    function __construct($x = 0, $base = 10)
    {
        if (!defined('MATH_BIGINTEGER_MODE')) {
            switch (true) {
                case extension_loaded('gmp'):
                    define('MATH_BIGINTEGER_MODE', MATH_BIGINTEGER_MODE_GMP);
                    break;
                case extension_loaded('bcmath'):
                    define('MATH_BIGINTEGER_MODE', MATH_BIGINTEGER_MODE_BCMATH);
                    break;
                default:
                    define('MATH_BIGINTEGER_MODE', MATH_BIGINTEGER_MODE_INTERNAL);
            }
        }

        if (extension_loaded('openssl') && !defined('MATH_BIGINTEGER_OPENSSL_DISABLE') && !defined('MATH_BIGINTEGER_OPENSSL_ENABLED')) {
            // some versions of XAMPP have mismatched versions of OpenSSL which causes it not to work
            ob_start();
            @phpinfo();
            $content = ob_get_contents();
            ob_end_clean();

            preg_match_all('#OpenSSL (Header|Library) Version(.*)#im', $content, $matches);

            $versions = array();
            if (!empty($matches[1])) {
                for ($i = 0; $i < count($matches[1]); $i++) {
                    $fullVersion = trim(str_replace('=>', '', strip_tags($matches[2][$i])));

                    // Remove letter part in OpenSSL version
                    if (!preg_match('/(\d+\.\d+\.\d+)/i', $fullVersion, $m)) {
                        $versions[$matches[1][$i]] = $fullVersion;
                    } else {
                        $versions[$matches[1][$i]] = $m[0];
                    }
                }
            }

            // it doesn't appear that OpenSSL versions were reported upon until PHP 5.3+
            switch (true) {
                case !isset($versions['Header']):
                case !isset($versions['Library']):
                case $versions['Header'] == $versions['Library']:
                case version_compare($versions['Header'], '1.0.0') >= 0 && version_compare($versions['Library'], '1.0.0') >= 0:
                    define('MATH_BIGINTEGER_OPENSSL_ENABLED', true);
                    break;
                default:
                    define('MATH_BIGINTEGER_OPENSSL_DISABLE', true);
            }
        }

        if (!defined('PHP_INT_SIZE')) {
            define('PHP_INT_SIZE', 4);
        }

        if (!defined('MATH_BIGINTEGER_BASE') && MATH_BIGINTEGER_MODE == MATH_BIGINTEGER_MODE_INTERNAL) {
            switch (PHP_INT_SIZE) {
                case 8: // use 64-bit integers if int size is 8 bytes
                    define('MATH_BIGINTEGER_BASE',       31);
                    define('MATH_BIGINTEGER_BASE_FULL',  0x80000000);
                    define('MATH_BIGINTEGER_MAX_DIGIT',  0x7FFFFFFF);
                    define('MATH_BIGINTEGER_MSB',        0x40000000);
                    // 10**9 is the closest we can get to 2**31 without passing it
                    define('MATH_BIGINTEGER_MAX10',      1000000000);
                    define('MATH_BIGINTEGER_MAX10_LEN',  9);
                    // the largest digit that may be used in addition / subtraction
                    define('MATH_BIGINTEGER_MAX_DIGIT2', pow(2, 62));
                    break;
                //case 4: // use 64-bit floats if int size is 4 bytes
                default:
                    define('MATH_BIGINTEGER_BASE',       26);
                    define('MATH_BIGINTEGER_BASE_FULL',  0x4000000);
                    define('MATH_BIGINTEGER_MAX_DIGIT',  0x3FFFFFF);
                    define('MATH_BIGINTEGER_MSB',        0x2000000);
                    // 10**7 is the closest to 2**26 without passing it
                    define('MATH_BIGINTEGER_MAX10',      10000000);
                    define('MATH_BIGINTEGER_MAX10_LEN',  7);
                    // the largest digit that may be used in addition / subtraction
                    // we do pow(2, 52) instead of using 4503599627370496 directly because some
                    // PHP installations will truncate 4503599627370496.
                    define('MATH_BIGINTEGER_MAX_DIGIT2', pow(2, 52));
            }
        }

        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                switch (true) {
                    case is_resource($x) && get_resource_type($x) == 'GMP integer':
                    // PHP 5.6 switched GMP from using resources to objects
                    case is_object($x) && get_class($x) == 'GMP':
                        $this->value = $x;
                        return;
                }
                $this->value = gmp_init(0);
                break;
            case MATH_BIGINTEGER_MODE_BCMATH:
                $this->value = '0';
                break;
            default:
                $this->value = array();
        }

        // '0' counts as empty() but when the base is 256 '0' is equal to ord('0') or 48
        // '0' is the only value like this per http://php.net/empty
        if (empty($x) && (abs($base) != 256 || $x !== '0')) {
            return;
        }

        switch ($base) {
            case -256:
                if (ord($x[0]) & 0x80) {
                    $x = ~$x;
                    $this->is_negative = true;
                }
            case 256:
                switch (MATH_BIGINTEGER_MODE) {
                    case MATH_BIGINTEGER_MODE_GMP:
                        $this->value = function_exists('gmp_import') ?
                            gmp_import($x) :
                            gmp_init('0x' . bin2hex($x));
                        if ($this->is_negative) {
                            $this->value = gmp_neg($this->value);
                        }
                        break;
                    case MATH_BIGINTEGER_MODE_BCMATH:
                        // round $len to the nearest 4 (thanks, DavidMJ!)
                        $len = (strlen($x) + 3) & 0xFFFFFFFC;

                        $x = str_pad($x, $len, chr(0), STR_PAD_LEFT);

                        for ($i = 0; $i < $len; $i+= 4) {
                            $this->value = bcmul($this->value, '4294967296', 0); // 4294967296 == 2**32
                            $this->value = bcadd($this->value, 0x1000000 * ord($x[$i]) + ((ord($x[$i + 1]) << 16) | (ord($x[$i + 2]) << 8) | ord($x[$i + 3])), 0);
                        }

                        if ($this->is_negative) {
                            $this->value = '-' . $this->value;
                        }

                        break;
                    // converts a base-2**8 (big endian / msb) number to base-2**26 (little endian / lsb)
                    default:
                        while (strlen($x)) {
                            $this->value[] = $this->_bytes2int($this->_base256_rshift($x, MATH_BIGINTEGER_BASE));
                        }
                }

                if ($this->is_negative) {
                    if (MATH_BIGINTEGER_MODE != MATH_BIGINTEGER_MODE_INTERNAL) {
                        $this->is_negative = false;
                    }
                    $temp = $this->add(new Math_BigInteger('-1'));
                    $this->value = $temp->value;
                }
                break;
            case 16:
            case -16:
                if ($base > 0 && $x[0] == '-') {
                    $this->is_negative = true;
                    $x = substr($x, 1);
                }

                $x = preg_replace('#^(?:0x)?([A-Fa-f0-9]*).*#', '$1', $x);

                $is_negative = false;
                if ($base < 0 && hexdec($x[0]) >= 8) {
                    $this->is_negative = $is_negative = true;
                    $x = bin2hex(~pack('H*', $x));
                }

                switch (MATH_BIGINTEGER_MODE) {
                    case MATH_BIGINTEGER_MODE_GMP:
                        $temp = $this->is_negative ? '-0x' . $x : '0x' . $x;
                        $this->value = gmp_init($temp);
                        $this->is_negative = false;
                        break;
                    case MATH_BIGINTEGER_MODE_BCMATH:
                        $x = (strlen($x) & 1) ? '0' . $x : $x;
                        $temp = new Math_BigInteger(pack('H*', $x), 256);
                        $this->value = $this->is_negative ? '-' . $temp->value : $temp->value;
                        $this->is_negative = false;
                        break;
                    default:
                        $x = (strlen($x) & 1) ? '0' . $x : $x;
                        $temp = new Math_BigInteger(pack('H*', $x), 256);
                        $this->value = $temp->value;
                }

                if ($is_negative) {
                    $temp = $this->add(new Math_BigInteger('-1'));
                    $this->value = $temp->value;
                }
                break;
            case 10:
            case -10:
                // (?<!^)(?:-).*: find any -'s that aren't at the beginning and then any characters that follow that
                // (?<=^|-)0*: find any 0's that are preceded by the start of the string or by a - (ie. octals)
                // [^-0-9].*: find any non-numeric characters and then any characters that follow that
                $x = preg_replace('#(?<!^)(?:-).*|(?<=^|-)0*|[^-0-9].*#', '', $x);
                if (!strlen($x) || $x == '-') {
                    $x = '0';
                }

                switch (MATH_BIGINTEGER_MODE) {
                    case MATH_BIGINTEGER_MODE_GMP:
                        $this->value = gmp_init($x);
                        break;
                    case MATH_BIGINTEGER_MODE_BCMATH:
                        // explicitly casting $x to a string is necessary, here, since doing $x[0] on -1 yields different
                        // results then doing it on '-1' does (modInverse does $x[0])
                        $this->value = $x === '-' ? '0' : (string) $x;
                        break;
                    default:
                        $temp = new Math_BigInteger();

                        $multiplier = new Math_BigInteger();
                        $multiplier->value = array(MATH_BIGINTEGER_MAX10);

                        if ($x[0] == '-') {
                            $this->is_negative = true;
                            $x = substr($x, 1);
                        }

                        $x = str_pad($x, strlen($x) + ((MATH_BIGINTEGER_MAX10_LEN - 1) * strlen($x)) % MATH_BIGINTEGER_MAX10_LEN, 0, STR_PAD_LEFT);
                        while (strlen($x)) {
                            $temp = $temp->multiply($multiplier);
                            $temp = $temp->add(new Math_BigInteger($this->_int2bytes(substr($x, 0, MATH_BIGINTEGER_MAX10_LEN)), 256));
                            $x = substr($x, MATH_BIGINTEGER_MAX10_LEN);
                        }

                        $this->value = $temp->value;
                }
                break;
            case 2: // base-2 support originally implemented by Lluis Pamies - thanks!
            case -2:
                if ($base > 0 && $x[0] == '-') {
                    $this->is_negative = true;
                    $x = substr($x, 1);
                }

                $x = preg_replace('#^([01]*).*#', '$1', $x);
                $x = str_pad($x, strlen($x) + (3 * strlen($x)) % 4, 0, STR_PAD_LEFT);

                $str = '0x';
                while (strlen($x)) {
                    $part = substr($x, 0, 4);
                    $str.= dechex(bindec($part));
                    $x = substr($x, 4);
                }

                if ($this->is_negative) {
                    $str = '-' . $str;
                }

                $temp = new Math_BigInteger($str, 8 * $base); // ie. either -16 or +16
                $this->value = $temp->value;
                $this->is_negative = $temp->is_negative;

                break;
            default:
                // base not supported, so we'll let $this == 0
        }
    }

    /**
     * PHP4 compatible Default Constructor.
     *
     * @see self::__construct()
     * @param $x base-10 number or base-$base number if $base set.
     * @param int $base
     * @access public
     */
    function Math_BigInteger($x = 0, $base = 10)
    {
        $this->__construct($x, $base);
    }

    /**
     * Converts a BigInteger to a byte string (eg. base-256).
     *
     * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're
     * saved as two's compliment.
     *
     * Here's an example:
     * <code>
     * <?php
     *    include 'Math/BigInteger.php';
     *
     *    $a = new Math_BigInteger('65');
     *
     *    echo $a->toBytes(); // outputs chr(65)
     * ?>
     * </code>
     *
     * @param bool $twos_compliment
     * @return string
     * @access public
     * @internal Converts a base-2**26 number to base-2**8
     */
    function toBytes($twos_compliment = false)
    {
        if ($twos_compliment) {
            $comparison = $this->compare(new Math_BigInteger());
            if ($comparison == 0) {
                return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : '';
            }

            $temp = $comparison < 0 ? $this->add(new Math_BigInteger(1)) : $this->copy();
            $bytes = $temp->toBytes();

            if (!strlen($bytes)) { // eg. if the number we're trying to convert is -1
                $bytes = chr(0);
            }

            if ($this->precision <= 0 && (ord($bytes[0]) & 0x80)) {
                $bytes = chr(0) . $bytes;
            }

            return $comparison < 0 ? ~$bytes : $bytes;
        }

        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                if (gmp_cmp($this->value, gmp_init(0)) == 0) {
                    return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : '';
                }

                if (function_exists('gmp_export')) {
                    $temp = gmp_export($this->value);
                } else {
                    $temp = gmp_strval(gmp_abs($this->value), 16);
                    $temp = (strlen($temp) & 1) ? '0' . $temp : $temp;
                    $temp = pack('H*', $temp);
                }

                return $this->precision > 0 ?
                    substr(str_pad($temp, $this->precision >> 3, chr(0), STR_PAD_LEFT), -($this->precision >> 3)) :
                    ltrim($temp, chr(0));
            case MATH_BIGINTEGER_MODE_BCMATH:
                if ($this->value === '0') {
                    return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : '';
                }

                $value = '';
                $current = $this->value;

                if ($current[0] == '-') {
                    $current = substr($current, 1);
                }

                while (bccomp($current, '0', 0) > 0) {
                    $temp = bcmod($current, '16777216');
                    $value = chr($temp >> 16) . chr($temp >> 8) . chr($temp) . $value;
                    $current = bcdiv($current, '16777216', 0);
                }

                return $this->precision > 0 ?
                    substr(str_pad($value, $this->precision >> 3, chr(0), STR_PAD_LEFT), -($this->precision >> 3)) :
                    ltrim($value, chr(0));
        }

        if (!count($this->value)) {
            return $this->precision > 0 ? str_repeat(chr(0), ($this->precision + 1) >> 3) : '';
        }
        $result = $this->_int2bytes($this->value[count($this->value) - 1]);

        $temp = $this->copy();

        for ($i = count($temp->value) - 2; $i >= 0; --$i) {
            $temp->_base256_lshift($result, MATH_BIGINTEGER_BASE);
            $result = $result | str_pad($temp->_int2bytes($temp->value[$i]), strlen($result), chr(0), STR_PAD_LEFT);
        }

        return $this->precision > 0 ?
            str_pad(substr($result, -(($this->precision + 7) >> 3)), ($this->precision + 7) >> 3, chr(0), STR_PAD_LEFT) :
            $result;
    }

    /**
     * Converts a BigInteger to a hex string (eg. base-16)).
     *
     * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're
     * saved as two's compliment.
     *
     * Here's an example:
     * <code>
     * <?php
     *    include 'Math/BigInteger.php';
     *
     *    $a = new Math_BigInteger('65');
     *
     *    echo $a->toHex(); // outputs '41'
     * ?>
     * </code>
     *
     * @param bool $twos_compliment
     * @return string
     * @access public
     * @internal Converts a base-2**26 number to base-2**8
     */
    function toHex($twos_compliment = false)
    {
        return bin2hex($this->toBytes($twos_compliment));
    }

    /**
     * Converts a BigInteger to a bit string (eg. base-2).
     *
     * Negative numbers are saved as positive numbers, unless $twos_compliment is set to true, at which point, they're
     * saved as two's compliment.
     *
     * Here's an example:
     * <code>
     * <?php
     *    include 'Math/BigInteger.php';
     *
     *    $a = new Math_BigInteger('65');
     *
     *    echo $a->toBits(); // outputs '1000001'
     * ?>
     * </code>
     *
     * @param bool $twos_compliment
     * @return string
     * @access public
     * @internal Converts a base-2**26 number to base-2**2
     */
    function toBits($twos_compliment = false)
    {
        $hex = $this->toHex($twos_compliment);
        $bits = '';
        for ($i = strlen($hex) - 8, $start = strlen($hex) & 7; $i >= $start; $i-=8) {
            $bits = str_pad(decbin(hexdec(substr($hex, $i, 8))), 32, '0', STR_PAD_LEFT) . $bits;
        }
        if ($start) { // hexdec('') == 0
            $bits = str_pad(decbin(hexdec(substr($hex, 0, $start))), 8, '0', STR_PAD_LEFT) . $bits;
        }
        $result = $this->precision > 0 ? substr($bits, -$this->precision) : ltrim($bits, '0');

        if ($twos_compliment && $this->compare(new Math_BigInteger()) > 0 && $this->precision <= 0) {
            return '0' . $result;
        }

        return $result;
    }

    /**
     * Converts a BigInteger to a base-10 number.
     *
     * Here's an example:
     * <code>
     * <?php
     *    include 'Math/BigInteger.php';
     *
     *    $a = new Math_BigInteger('50');
     *
     *    echo $a->toString(); // outputs 50
     * ?>
     * </code>
     *
     * @return string
     * @access public
     * @internal Converts a base-2**26 number to base-10**7 (which is pretty much base-10)
     */
    function toString()
    {
        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                return gmp_strval($this->value);
            case MATH_BIGINTEGER_MODE_BCMATH:
                if ($this->value === '0') {
                    return '0';
                }

                return ltrim($this->value, '0');
        }

        if (!count($this->value)) {
            return '0';
        }

        $temp = $this->copy();
        $temp->bitmask = false;
        $temp->is_negative = false;

        $divisor = new Math_BigInteger();
        $divisor->value = array(MATH_BIGINTEGER_MAX10);
        $result = '';
        while (count($temp->value)) {
            list($temp, $mod) = $temp->divide($divisor);
            $result = str_pad(isset($mod->value[0]) ? $mod->value[0] : '', MATH_BIGINTEGER_MAX10_LEN, '0', STR_PAD_LEFT) . $result;
        }
        $result = ltrim($result, '0');
        if (empty($result)) {
            $result = '0';
        }

        if ($this->is_negative) {
            $result = '-' . $result;
        }

        return $result;
    }

    /**
     * Copy an object
     *
     * PHP5 passes objects by reference while PHP4 passes by value.  As such, we need a function to guarantee
     * that all objects are passed by value, when appropriate.  More information can be found here:
     *
     * {@link http://php.net/language.oop5.basic#51624}
     *
     * @access public
     * @see self::__clone()
     * @return Math_BigInteger
     */
    function copy()
    {
        $temp = new Math_BigInteger();
        $temp->value = $this->value;
        $temp->is_negative = $this->is_negative;
        $temp->precision = $this->precision;
        $temp->bitmask = $this->bitmask;
        return $temp;
    }

    /**
     *  __toString() magic method
     *
     * Will be called, automatically, if you're supporting just PHP5.  If you're supporting PHP4, you'll need to call
     * toString().
     *
     * @access public
     * @internal Implemented per a suggestion by Techie-Michael - thanks!
     */
    function __toString()
    {
        return $this->toString();
    }

    /**
     * __clone() magic method
     *
     * Although you can call Math_BigInteger::__toString() directly in PHP5, you cannot call Math_BigInteger::__clone()
     * directly in PHP5.  You can in PHP4 since it's not a magic method, but in PHP5, you have to call it by using the PHP5
     * only syntax of $y = clone $x.  As such, if you're trying to write an application that works on both PHP4 and PHP5,
     * call Math_BigInteger::copy(), instead.
     *
     * @access public
     * @see self::copy()
     * @return Math_BigInteger
     */
    function __clone()
    {
        return $this->copy();
    }

    /**
     *  __sleep() magic method
     *
     * Will be called, automatically, when serialize() is called on a Math_BigInteger object.
     *
     * @see self::__wakeup()
     * @access public
     */
    function __sleep()
    {
        $this->hex = $this->toHex(true);
        $vars = array('hex');
        if ($this->precision > 0) {
            $vars[] = 'precision';
        }
        return $vars;
    }

    /**
     *  __wakeup() magic method
     *
     * Will be called, automatically, when unserialize() is called on a Math_BigInteger object.
     *
     * @see self::__sleep()
     * @access public
     */
    function __wakeup()
    {
        $temp = new Math_BigInteger($this->hex, -16);
        $this->value = $temp->value;
        $this->is_negative = $temp->is_negative;
        if ($this->precision > 0) {
            // recalculate $this->bitmask
            $this->setPrecision($this->precision);
        }
    }

    /**
     *  __debugInfo() magic method
     *
     * Will be called, automatically, when print_r() or var_dump() are called
     *
     * @access public
     */
    function __debugInfo()
    {
        $opts = array();
        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                $engine = 'gmp';
                break;
            case MATH_BIGINTEGER_MODE_BCMATH:
                $engine = 'bcmath';
                break;
            case MATH_BIGINTEGER_MODE_INTERNAL:
                $engine = 'internal';
                $opts[] = PHP_INT_SIZE == 8 ? '64-bit' : '32-bit';
        }
        if (MATH_BIGINTEGER_MODE != MATH_BIGINTEGER_MODE_GMP && defined('MATH_BIGINTEGER_OPENSSL_ENABLED')) {
            $opts[] = 'OpenSSL';
        }
        if (!empty($opts)) {
            $engine.= ' (' . implode('.', $opts) . ')';
        }
        return array(
            'value' => '0x' . $this->toHex(true),
            'engine' => $engine
        );
    }

    /**
     * Adds two BigIntegers.
     *
     * Here's an example:
     * <code>
     * <?php
     *    include 'Math/BigInteger.php';
     *
     *    $a = new Math_BigInteger('10');
     *    $b = new Math_BigInteger('20');
     *
     *    $c = $a->add($b);
     *
     *    echo $c->toString(); // outputs 30
     * ?>
     * </code>
     *
     * @param Math_BigInteger $y
     * @return Math_BigInteger
     * @access public
     * @internal Performs base-2**52 addition
     */
    function add($y)
    {
        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                $temp = new Math_BigInteger();
                $temp->value = gmp_add($this->value, $y->value);

                return $this->_normalize($temp);
            case MATH_BIGINTEGER_MODE_BCMATH:
                $temp = new Math_BigInteger();
                $temp->value = bcadd($this->value, $y->value, 0);

                return $this->_normalize($temp);
        }

        $temp = $this->_add($this->value, $this->is_negative, $y->value, $y->is_negative);

        $result = new Math_BigInteger();
        $result->value = $temp[MATH_BIGINTEGER_VALUE];
        $result->is_negative = $temp[MATH_BIGINTEGER_SIGN];

        return $this->_normalize($result);
    }

    /**
     * Performs addition.
     *
     * @param array $x_value
     * @param bool $x_negative
     * @param array $y_value
     * @param bool $y_negative
     * @return array
     * @access private
     */
    function _add($x_value, $x_negative, $y_value, $y_negative)
    {
        $x_size = count($x_value);
        $y_size = count($y_value);

        if ($x_size == 0) {
            return array(
                MATH_BIGINTEGER_VALUE => $y_value,
                MATH_BIGINTEGER_SIGN => $y_negative
            );
        } elseif ($y_size == 0) {
            return array(
                MATH_BIGINTEGER_VALUE => $x_value,
                MATH_BIGINTEGER_SIGN => $x_negative
            );
        }

        // subtract, if appropriate
        if ($x_negative != $y_negative) {
            if ($x_value == $y_value) {
                return array(
                    MATH_BIGINTEGER_VALUE => array(),
                    MATH_BIGINTEGER_SIGN => false
                );
            }

            $temp = $this->_subtract($x_value, false, $y_value, false);
            $temp[MATH_BIGINTEGER_SIGN] = $this->_compare($x_value, false, $y_value, false) > 0 ?
                                          $x_negative : $y_negative;

            return $temp;
        }

        if ($x_size < $y_size) {
            $size = $x_size;
            $value = $y_value;
        } else {
            $size = $y_size;
            $value = $x_value;
        }

        $value[count($value)] = 0; // just in case the carry adds an extra digit

        $carry = 0;
        for ($i = 0, $j = 1; $j < $size; $i+=2, $j+=2) {
            $sum = $x_value[$j] * MATH_BIGINTEGER_BASE_FULL + $x_value[$i] + $y_value[$j] * MATH_BIGINTEGER_BASE_FULL + $y_value[$i] + $carry;
            $carry = $sum >= MATH_BIGINTEGER_MAX_DIGIT2; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1
            $sum = $carry ? $sum - MATH_BIGINTEGER_MAX_DIGIT2 : $sum;

            $temp = MATH_BIGINTEGER_BASE === 26 ? intval($sum / 0x4000000) : ($sum >> 31);

            $value[$i] = (int) ($sum - MATH_BIGINTEGER_BASE_FULL * $temp); // eg. a faster alternative to fmod($sum, 0x4000000)
            $value[$j] = $temp;
        }

        if ($j == $size) { // ie. if $y_size is odd
            $sum = $x_value[$i] + $y_value[$i] + $carry;
            $carry = $sum >= MATH_BIGINTEGER_BASE_FULL;
            $value[$i] = $carry ? $sum - MATH_BIGINTEGER_BASE_FULL : $sum;
            ++$i; // ie. let $i = $j since we've just done $value[$i]
        }

        if ($carry) {
            for (; $value[$i] == MATH_BIGINTEGER_MAX_DIGIT; ++$i) {
                $value[$i] = 0;
            }
            ++$value[$i];
        }

        return array(
            MATH_BIGINTEGER_VALUE => $this->_trim($value),
            MATH_BIGINTEGER_SIGN => $x_negative
        );
    }

    /**
     * Subtracts two BigIntegers.
     *
     * Here's an example:
     * <code>
     * <?php
     *    include 'Math/BigInteger.php';
     *
     *    $a = new Math_BigInteger('10');
     *    $b = new Math_BigInteger('20');
     *
     *    $c = $a->subtract($b);
     *
     *    echo $c->toString(); // outputs -10
     * ?>
     * </code>
     *
     * @param Math_BigInteger $y
     * @return Math_BigInteger
     * @access public
     * @internal Performs base-2**52 subtraction
     */
    function subtract($y)
    {
        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                $temp = new Math_BigInteger();
                $temp->value = gmp_sub($this->value, $y->value);

                return $this->_normalize($temp);
            case MATH_BIGINTEGER_MODE_BCMATH:
                $temp = new Math_BigInteger();
                $temp->value = bcsub($this->value, $y->value, 0);

                return $this->_normalize($temp);
        }

        $temp = $this->_subtract($this->value, $this->is_negative, $y->value, $y->is_negative);

        $result = new Math_BigInteger();
        $result->value = $temp[MATH_BIGINTEGER_VALUE];
        $result->is_negative = $temp[MATH_BIGINTEGER_SIGN];

        return $this->_normalize($result);
    }

    /**
     * Performs subtraction.
     *
     * @param array $x_value
     * @param bool $x_negative
     * @param array $y_value
     * @param bool $y_negative
     * @return array
     * @access private
     */
    function _subtract($x_value, $x_negative, $y_value, $y_negative)
    {
        $x_size = count($x_value);
        $y_size = count($y_value);

        if ($x_size == 0) {
            return array(
                MATH_BIGINTEGER_VALUE => $y_value,
                MATH_BIGINTEGER_SIGN => !$y_negative
            );
        } elseif ($y_size == 0) {
            return array(
                MATH_BIGINTEGER_VALUE => $x_value,
                MATH_BIGINTEGER_SIGN => $x_negative
            );
        }

        // add, if appropriate (ie. -$x - +$y or +$x - -$y)
        if ($x_negative != $y_negative) {
            $temp = $this->_add($x_value, false, $y_value, false);
            $temp[MATH_BIGINTEGER_SIGN] = $x_negative;

            return $temp;
        }

        $diff = $this->_compare($x_value, $x_negative, $y_value, $y_negative);

        if (!$diff) {
            return array(
                MATH_BIGINTEGER_VALUE => array(),
                MATH_BIGINTEGER_SIGN => false
            );
        }

        // switch $x and $y around, if appropriate.
        if ((!$x_negative && $diff < 0) || ($x_negative && $diff > 0)) {
            $temp = $x_value;
            $x_value = $y_value;
            $y_value = $temp;

            $x_negative = !$x_negative;

            $x_size = count($x_value);
            $y_size = count($y_value);
        }

        // at this point, $x_value should be at least as big as - if not bigger than - $y_value

        $carry = 0;
        for ($i = 0, $j = 1; $j < $y_size; $i+=2, $j+=2) {
            $sum = $x_value[$j] * MATH_BIGINTEGER_BASE_FULL + $x_value[$i] - $y_value[$j] * MATH_BIGINTEGER_BASE_FULL - $y_value[$i] - $carry;
            $carry = $sum < 0; // eg. floor($sum / 2**52); only possible values (in any base) are 0 and 1
            $sum = $carry ? $sum + MATH_BIGINTEGER_MAX_DIGIT2 : $sum;

            $temp = MATH_BIGINTEGER_BASE === 26 ? intval($sum / 0x4000000) : ($sum >> 31);

            $x_value[$i] = (int) ($sum - MATH_BIGINTEGER_BASE_FULL * $temp);
            $x_value[$j] = $temp;
        }

        if ($j == $y_size) { // ie. if $y_size is odd
            $sum = $x_value[$i] - $y_value[$i] - $carry;
            $carry = $sum < 0;
            $x_value[$i] = $carry ? $sum + MATH_BIGINTEGER_BASE_FULL : $sum;
            ++$i;
        }

        if ($carry) {
            for (; !$x_value[$i]; ++$i) {
                $x_value[$i] = MATH_BIGINTEGER_MAX_DIGIT;
            }
            --$x_value[$i];
        }

        return array(
            MATH_BIGINTEGER_VALUE => $this->_trim($x_value),
            MATH_BIGINTEGER_SIGN => $x_negative
        );
    }

    /**
     * Multiplies two BigIntegers
     *
     * Here's an example:
     * <code>
     * <?php
     *    include 'Math/BigInteger.php';
     *
     *    $a = new Math_BigInteger('10');
     *    $b = new Math_BigInteger('20');
     *
     *    $c = $a->multiply($b);
     *
     *    echo $c->toString(); // outputs 200
     * ?>
     * </code>
     *
     * @param Math_BigInteger $x
     * @return Math_BigInteger
     * @access public
     */
    function multiply($x)
    {
        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                $temp = new Math_BigInteger();
                $temp->value = gmp_mul($this->value, $x->value);

                return $this->_normalize($temp);
            case MATH_BIGINTEGER_MODE_BCMATH:
                $temp = new Math_BigInteger();
                $temp->value = bcmul($this->value, $x->value, 0);

                return $this->_normalize($temp);
        }

        $temp = $this->_multiply($this->value, $this->is_negative, $x->value, $x->is_negative);

        $product = new Math_BigInteger();
        $product->value = $temp[MATH_BIGINTEGER_VALUE];
        $product->is_negative = $temp[MATH_BIGINTEGER_SIGN];

        return $this->_normalize($product);
    }

    /**
     * Performs multiplication.
     *
     * @param array $x_value
     * @param bool $x_negative
     * @param array $y_value
     * @param bool $y_negative
     * @return array
     * @access private
     */
    function _multiply($x_value, $x_negative, $y_value, $y_negative)
    {
        //if ( $x_value == $y_value ) {
        //    return array(
        //        MATH_BIGINTEGER_VALUE => $this->_square($x_value),
        //        MATH_BIGINTEGER_SIGN => $x_sign != $y_value
        //    );
        //}

        $x_length = count($x_value);
        $y_length = count($y_value);

        if (!$x_length || !$y_length) { // a 0 is being multiplied
            return array(
                MATH_BIGINTEGER_VALUE => array(),
                MATH_BIGINTEGER_SIGN => false
            );
        }

        return array(
            MATH_BIGINTEGER_VALUE => min($x_length, $y_length) < 2 * MATH_BIGINTEGER_KARATSUBA_CUTOFF ?
                $this->_trim($this->_regularMultiply($x_value, $y_value)) :
                $this->_trim($this->_karatsuba($x_value, $y_value)),
            MATH_BIGINTEGER_SIGN => $x_negative != $y_negative
        );
    }

    /**
     * Performs long multiplication on two BigIntegers
     *
     * Modeled after 'multiply' in MutableBigInteger.java.
     *
     * @param array $x_value
     * @param array $y_value
     * @return array
     * @access private
     */
    function _regularMultiply($x_value, $y_value)
    {
        $x_length = count($x_value);
        $y_length = count($y_value);

        if (!$x_length || !$y_length) { // a 0 is being multiplied
            return array();
        }

        if ($x_length < $y_length) {
            $temp = $x_value;
            $x_value = $y_value;
            $y_value = $temp;

            $x_length = count($x_value);
            $y_length = count($y_value);
        }

        $product_value = $this->_array_repeat(0, $x_length + $y_length);

        // the following for loop could be removed if the for loop following it
        // (the one with nested for loops) initially set $i to 0, but
        // doing so would also make the result in one set of unnecessary adds,
        // since on the outermost loops first pass, $product->value[$k] is going
        // to always be 0

        $carry = 0;

        for ($j = 0; $j < $x_length; ++$j) { // ie. $i = 0
            $temp = $x_value[$j] * $y_value[0] + $carry; // $product_value[$k] == 0
            $carry = MATH_BIGINTEGER_BASE === 26 ? intval($temp / 0x4000000) : ($temp >> 31);
            $product_value[$j] = (int) ($temp - MATH_BIGINTEGER_BASE_FULL * $carry);
        }

        $product_value[$j] = $carry;

        // the above for loop is what the previous comment was talking about.  the
        // following for loop is the "one with nested for loops"
        for ($i = 1; $i < $y_length; ++$i) {
            $carry = 0;

            for ($j = 0, $k = $i; $j < $x_length; ++$j, ++$k) {
                $temp = $product_value[$k] + $x_value[$j] * $y_value[$i] + $carry;
                $carry = MATH_BIGINTEGER_BASE === 26 ? intval($temp / 0x4000000) : ($temp >> 31);
                $product_value[$k] = (int) ($temp - MATH_BIGINTEGER_BASE_FULL * $carry);
            }

            $product_value[$k] = $carry;
        }

        return $product_value;
    }

    /**
     * Performs Karatsuba multiplication on two BigIntegers
     *
     * See {@link http://en.wikipedia.org/wiki/Karatsuba_algorithm Karatsuba algorithm} and
     * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=120 MPM 5.2.3}.
     *
     * @param array $x_value
     * @param array $y_value
     * @return array
     * @access private
     */
    function _karatsuba($x_value, $y_value)
    {
        $m = min(count($x_value) >> 1, count($y_value) >> 1);

        if ($m < MATH_BIGINTEGER_KARATSUBA_CUTOFF) {
            return $this->_regularMultiply($x_value, $y_value);
        }

        $x1 = array_slice($x_value, $m);
        $x0 = array_slice($x_value, 0, $m);
        $y1 = array_slice($y_value, $m);
        $y0 = array_slice($y_value, 0, $m);

        $z2 = $this->_karatsuba($x1, $y1);
        $z0 = $this->_karatsuba($x0, $y0);

        $z1 = $this->_add($x1, false, $x0, false);
        $temp = $this->_add($y1, false, $y0, false);
        $z1 = $this->_karatsuba($z1[MATH_BIGINTEGER_VALUE], $temp[MATH_BIGINTEGER_VALUE]);
        $temp = $this->_add($z2, false, $z0, false);
        $z1 = $this->_subtract($z1, false, $temp[MATH_BIGINTEGER_VALUE], false);

        $z2 = array_merge(array_fill(0, 2 * $m, 0), $z2);
        $z1[MATH_BIGINTEGER_VALUE] = array_merge(array_fill(0, $m, 0), $z1[MATH_BIGINTEGER_VALUE]);

        $xy = $this->_add($z2, false, $z1[MATH_BIGINTEGER_VALUE], $z1[MATH_BIGINTEGER_SIGN]);
        $xy = $this->_add($xy[MATH_BIGINTEGER_VALUE], $xy[MATH_BIGINTEGER_SIGN], $z0, false);

        return $xy[MATH_BIGINTEGER_VALUE];
    }

    /**
     * Performs squaring
     *
     * @param array $x
     * @return array
     * @access private
     */
    function _square($x = false)
    {
        return count($x) < 2 * MATH_BIGINTEGER_KARATSUBA_CUTOFF ?
            $this->_trim($this->_baseSquare($x)) :
            $this->_trim($this->_karatsubaSquare($x));
    }

    /**
     * Performs traditional squaring on two BigIntegers
     *
     * Squaring can be done faster than multiplying a number by itself can be.  See
     * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=7 HAC 14.2.4} /
     * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=141 MPM 5.3} for more information.
     *
     * @param array $value
     * @return array
     * @access private
     */
    function _baseSquare($value)
    {
        if (empty($value)) {
            return array();
        }
        $square_value = $this->_array_repeat(0, 2 * count($value));

        for ($i = 0, $max_index = count($value) - 1; $i <= $max_index; ++$i) {
            $i2 = $i << 1;

            $temp = $square_value[$i2] + $value[$i] * $value[$i];
            $carry = MATH_BIGINTEGER_BASE === 26 ? intval($temp / 0x4000000) : ($temp >> 31);
            $square_value[$i2] = (int) ($temp - MATH_BIGINTEGER_BASE_FULL * $carry);

            // note how we start from $i+1 instead of 0 as we do in multiplication.
            for ($j = $i + 1, $k = $i2 + 1; $j <= $max_index; ++$j, ++$k) {
                $temp = $square_value[$k] + 2 * $value[$j] * $value[$i] + $carry;
                $carry = MATH_BIGINTEGER_BASE === 26 ? intval($temp / 0x4000000) : ($temp >> 31);
                $square_value[$k] = (int) ($temp - MATH_BIGINTEGER_BASE_FULL * $carry);
            }

            // the following line can yield values larger 2**15.  at this point, PHP should switch
            // over to floats.
            $square_value[$i + $max_index + 1] = $carry;
        }

        return $square_value;
    }

    /**
     * Performs Karatsuba "squaring" on two BigIntegers
     *
     * See {@link http://en.wikipedia.org/wiki/Karatsuba_algorithm Karatsuba algorithm} and
     * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=151 MPM 5.3.4}.
     *
     * @param array $value
     * @return array
     * @access private
     */
    function _karatsubaSquare($value)
    {
        $m = count($value) >> 1;

        if ($m < MATH_BIGINTEGER_KARATSUBA_CUTOFF) {
            return $this->_baseSquare($value);
        }

        $x1 = array_slice($value, $m);
        $x0 = array_slice($value, 0, $m);

        $z2 = $this->_karatsubaSquare($x1);
        $z0 = $this->_karatsubaSquare($x0);

        $z1 = $this->_add($x1, false, $x0, false);
        $z1 = $this->_karatsubaSquare($z1[MATH_BIGINTEGER_VALUE]);
        $temp = $this->_add($z2, false, $z0, false);
        $z1 = $this->_subtract($z1, false, $temp[MATH_BIGINTEGER_VALUE], false);

        $z2 = array_merge(array_fill(0, 2 * $m, 0), $z2);
        $z1[MATH_BIGINTEGER_VALUE] = array_merge(array_fill(0, $m, 0), $z1[MATH_BIGINTEGER_VALUE]);

        $xx = $this->_add($z2, false, $z1[MATH_BIGINTEGER_VALUE], $z1[MATH_BIGINTEGER_SIGN]);
        $xx = $this->_add($xx[MATH_BIGINTEGER_VALUE], $xx[MATH_BIGINTEGER_SIGN], $z0, false);

        return $xx[MATH_BIGINTEGER_VALUE];
    }

    /**
     * Divides two BigIntegers.
     *
     * Returns an array whose first element contains the quotient and whose second element contains the
     * "common residue".  If the remainder would be positive, the "common residue" and the remainder are the
     * same.  If the remainder would be negative, the "common residue" is equal to the sum of the remainder
     * and the divisor (basically, the "common residue" is the first positive modulo).
     *
     * Here's an example:
     * <code>
     * <?php
     *    include 'Math/BigInteger.php';
     *
     *    $a = new Math_BigInteger('10');
     *    $b = new Math_BigInteger('20');
     *
     *    list($quotient, $remainder) = $a->divide($b);
     *
     *    echo $quotient->toString(); // outputs 0
     *    echo "\r\n";
     *    echo $remainder->toString(); // outputs 10
     * ?>
     * </code>
     *
     * @param Math_BigInteger $y
     * @return array
     * @access public
     * @internal This function is based off of {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=9 HAC 14.20}.
     */
    function divide($y)
    {
        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                $quotient = new Math_BigInteger();
                $remainder = new Math_BigInteger();

                list($quotient->value, $remainder->value) = gmp_div_qr($this->value, $y->value);

                if (gmp_sign($remainder->value) < 0) {
                    $remainder->value = gmp_add($remainder->value, gmp_abs($y->value));
                }

                return array($this->_normalize($quotient), $this->_normalize($remainder));
            case MATH_BIGINTEGER_MODE_BCMATH:
                $quotient = new Math_BigInteger();
                $remainder = new Math_BigInteger();

                $quotient->value = bcdiv($this->value, $y->value, 0);
                $remainder->value = bcmod($this->value, $y->value);

                if ($remainder->value[0] == '-') {
                    $remainder->value = bcadd($remainder->value, $y->value[0] == '-' ? substr($y->value, 1) : $y->value, 0);
                }

                return array($this->_normalize($quotient), $this->_normalize($remainder));
        }

        if (count($y->value) == 1) {
            list($q, $r) = $this->_divide_digit($this->value, $y->value[0]);
            $quotient = new Math_BigInteger();
            $remainder = new Math_BigInteger();
            $quotient->value = $q;
            $remainder->value = array($r);
            $quotient->is_negative = $this->is_negative != $y->is_negative;
            return array($this->_normalize($quotient), $this->_normalize($remainder));
        }

        static $zero;
        if (!isset($zero)) {
            $zero = new Math_BigInteger();
        }

        $x = $this->copy();
        $y = $y->copy();

        $x_sign = $x->is_negative;
        $y_sign = $y->is_negative;

        $x->is_negative = $y->is_negative = false;

        $diff = $x->compare($y);

        if (!$diff) {
            $temp = new Math_BigInteger();
            $temp->value = array(1);
            $temp->is_negative = $x_sign != $y_sign;
            return array($this->_normalize($temp), $this->_normalize(new Math_BigInteger()));
        }

        if ($diff < 0) {
            // if $x is negative, "add" $y.
            if ($x_sign) {
                $x = $y->subtract($x);
            }
            return array($this->_normalize(new Math_BigInteger()), $this->_normalize($x));
        }

        // normalize $x and $y as described in HAC 14.23 / 14.24
        $msb = $y->value[count($y->value) - 1];
        for ($shift = 0; !($msb & MATH_BIGINTEGER_MSB); ++$shift) {
            $msb <<= 1;
        }
        $x->_lshift($shift);
        $y->_lshift($shift);
        $y_value = &$y->value;

        $x_max = count($x->value) - 1;
        $y_max = count($y->value) - 1;

        $quotient = new Math_BigInteger();
        $quotient_value = &$quotient->value;
        $quotient_value = $this->_array_repeat(0, $x_max - $y_max + 1);

        static $temp, $lhs, $rhs;
        if (!isset($temp)) {
            $temp = new Math_BigInteger();
            $lhs =  new Math_BigInteger();
            $rhs =  new Math_BigInteger();
        }
        $temp_value = &$temp->value;
        $rhs_value =  &$rhs->value;

        // $temp = $y << ($x_max - $y_max-1) in base 2**26
        $temp_value = array_merge($this->_array_repeat(0, $x_max - $y_max), $y_value);

        while ($x->compare($temp) >= 0) {
            // calculate the "common residue"
            ++$quotient_value[$x_max - $y_max];
            $x = $x->subtract($temp);
            $x_max = count($x->value) - 1;
        }

        for ($i = $x_max; $i >= $y_max + 1; --$i) {
            $x_value = &$x->value;
            $x_window = array(
                isset($x_value[$i]) ? $x_value[$i] : 0,
                isset($x_value[$i - 1]) ? $x_value[$i - 1] : 0,
                isset($x_value[$i - 2]) ? $x_value[$i - 2] : 0
            );
            $y_window = array(
                $y_value[$y_max],
                ($y_max > 0) ? $y_value[$y_max - 1] : 0
            );

            $q_index = $i - $y_max - 1;
            if ($x_window[0] == $y_window[0]) {
                $quotient_value[$q_index] = MATH_BIGINTEGER_MAX_DIGIT;
            } else {
                $quotient_value[$q_index] = $this->_safe_divide(
                    $x_window[0] * MATH_BIGINTEGER_BASE_FULL + $x_window[1],
                    $y_window[0]
                );
            }

            $temp_value = array($y_window[1], $y_window[0]);

            $lhs->value = array($quotient_value[$q_index]);
            $lhs = $lhs->multiply($temp);

            $rhs_value = array($x_window[2], $x_window[1], $x_window[0]);

            while ($lhs->compare($rhs) > 0) {
                --$quotient_value[$q_index];

                $lhs->value = array($quotient_value[$q_index]);
                $lhs = $lhs->multiply($temp);
            }

            $adjust = $this->_array_repeat(0, $q_index);
            $temp_value = array($quotient_value[$q_index]);
            $temp = $temp->multiply($y);
            $temp_value = &$temp->value;
            if (count($temp_value)) {
                $temp_value = array_merge($adjust, $temp_value);
            }

            $x = $x->subtract($temp);

            if ($x->compare($zero) < 0) {
                $temp_value = array_merge($adjust, $y_value);
                $x = $x->add($temp);

                --$quotient_value[$q_index];
            }

            $x_max = count($x_value) - 1;
        }

        // unnormalize the remainder
        $x->_rshift($shift);

        $quotient->is_negative = $x_sign != $y_sign;

        // calculate the "common residue", if appropriate
        if ($x_sign) {
            $y->_rshift($shift);
            $x = $y->subtract($x);
        }

        return array($this->_normalize($quotient), $this->_normalize($x));
    }

    /**
     * Divides a BigInteger by a regular integer
     *
     * abc / x = a00 / x + b0 / x + c / x
     *
     * @param array $dividend
     * @param array $divisor
     * @return array
     * @access private
     */
    function _divide_digit($dividend, $divisor)
    {
        $carry = 0;
        $result = array();

        for ($i = count($dividend) - 1; $i >= 0; --$i) {
            $temp = MATH_BIGINTEGER_BASE_FULL * $carry + $dividend[$i];
            $result[$i] = $this->_safe_divide($temp, $divisor);
            $carry = (int) ($temp - $divisor * $result[$i]);
        }

        return array($result, $carry);
    }

    /**
     * Performs modular exponentiation.
     *
     * Here's an example:
     * <code>
     * <?php
     *    include 'Math/BigInteger.php';
     *
     *    $a = new Math_BigInteger('10');
     *    $b = new Math_BigInteger('20');
     *    $c = new Math_BigInteger('30');
     *
     *    $c = $a->modPow($b, $c);
     *
     *    echo $c->toString(); // outputs 10
     * ?>
     * </code>
     *
     * @param Math_BigInteger $e
     * @param Math_BigInteger $n
     * @return Math_BigInteger
     * @access public
     * @internal The most naive approach to modular exponentiation has very unreasonable requirements, and
     *    and although the approach involving repeated squaring does vastly better, it, too, is impractical
     *    for our purposes.  The reason being that division - by far the most complicated and time-consuming
     *    of the basic operations (eg. +,-,*,/) - occurs multiple times within it.
     *
     *    Modular reductions resolve this issue.  Although an individual modular reduction takes more time
     *    then an individual division, when performed in succession (with the same modulo), they're a lot faster.
     *
     *    The two most commonly used modular reductions are Barrett and Montgomery reduction.  Montgomery reduction,
     *    although faster, only works when the gcd of the modulo and of the base being used is 1.  In RSA, when the
     *    base is a power of two, the modulo - a product of two primes - is always going to have a gcd of 1 (because
     *    the product of two odd numbers is odd), but what about when RSA isn't used?
     *
     *    In contrast, Barrett reduction has no such constraint.  As such, some bigint implementations perform a
     *    Barrett reduction after every operation in the modpow function.  Others perform Barrett reductions when the
     *    modulo is even and Montgomery reductions when the modulo is odd.  BigInteger.java's modPow method, however,
     *    uses a trick involving the Chinese Remainder Theorem to factor the even modulo into two numbers - one odd and
     *    the other, a power of two - and recombine them, later.  This is the method that this modPow function uses.
     *    {@link http://islab.oregonstate.edu/papers/j34monex.pdf Montgomery Reduction with Even Modulus} elaborates.
     */
    function modPow($e, $n)
    {
        $n = $this->bitmask !== false && $this->bitmask->compare($n) < 0 ? $this->bitmask : $n->abs();

        if ($e->compare(new Math_BigInteger()) < 0) {
            $e = $e->abs();

            $temp = $this->modInverse($n);
            if ($temp === false) {
                return false;
            }

            return $this->_normalize($temp->modPow($e, $n));
        }

        if (MATH_BIGINTEGER_MODE == MATH_BIGINTEGER_MODE_GMP) {
            $temp = new Math_BigInteger();
            $temp->value = gmp_powm($this->value, $e->value, $n->value);

            return $this->_normalize($temp);
        }

        if ($this->compare(new Math_BigInteger()) < 0 || $this->compare($n) > 0) {
            list(, $temp) = $this->divide($n);
            return $temp->modPow($e, $n);
        }

        if (defined('MATH_BIGINTEGER_OPENSSL_ENABLED')) {
            $components = array(
                'modulus' => $n->toBytes(true),
                'publicExponent' => $e->toBytes(true)
            );

            $components = array(
                'modulus' => pack('Ca*a*', 2, $this->_encodeASN1Length(strlen($components['modulus'])), $components['modulus']),
                'publicExponent' => pack('Ca*a*', 2, $this->_encodeASN1Length(strlen($components['publicExponent'])), $components['publicExponent'])
            );

            $RSAPublicKey = pack(
                'Ca*a*a*',
                48,
                $this->_encodeASN1Length(strlen($components['modulus']) + strlen($components['publicExponent'])),
                $components['modulus'],
                $components['publicExponent']
            );

            $rsaOID = pack('H*', '300d06092a864886f70d0101010500'); // hex version of MA0GCSqGSIb3DQEBAQUA
            $RSAPublicKey = chr(0) . $RSAPublicKey;
            $RSAPublicKey = chr(3) . $this->_encodeASN1Length(strlen($RSAPublicKey)) . $RSAPublicKey;

            $encapsulated = pack(
                'Ca*a*',
                48,
                $this->_encodeASN1Length(strlen($rsaOID . $RSAPublicKey)),
                $rsaOID . $RSAPublicKey
            );

            $RSAPublicKey = "-----BEGIN PUBLIC KEY-----\r\n" .
                             chunk_split(base64_encode($encapsulated)) .
                             '-----END PUBLIC KEY-----';

            $plaintext = str_pad($this->toBytes(), strlen($n->toBytes(true)) - 1, "\0", STR_PAD_LEFT);

            if (openssl_public_encrypt($plaintext, $result, $RSAPublicKey, OPENSSL_NO_PADDING)) {
                return new Math_BigInteger($result, 256);
            }
        }

        if (MATH_BIGINTEGER_MODE == MATH_BIGINTEGER_MODE_BCMATH) {
            $temp = new Math_BigInteger();
            $temp->value = bcpowmod($this->value, $e->value, $n->value, 0);

            return $this->_normalize($temp);
        }

        if (empty($e->value)) {
            $temp = new Math_BigInteger();
            $temp->value = array(1);
            return $this->_normalize($temp);
        }

        if ($e->value == array(1)) {
            list(, $temp) = $this->divide($n);
            return $this->_normalize($temp);
        }

        if ($e->value == array(2)) {
            $temp = new Math_BigInteger();
            $temp->value = $this->_square($this->value);
            list(, $temp) = $temp->divide($n);
            return $this->_normalize($temp);
        }

        return $this->_normalize($this->_slidingWindow($e, $n, MATH_BIGINTEGER_BARRETT));

        // the following code, although not callable, can be run independently of the above code
        // although the above code performed better in my benchmarks the following could might
        // perform better under different circumstances. in lieu of deleting it it's just been
        // made uncallable

        // is the modulo odd?
        if ($n->value[0] & 1) {
            return $this->_normalize($this->_slidingWindow($e, $n, MATH_BIGINTEGER_MONTGOMERY));
        }
        // if it's not, it's even

        // find the lowest set bit (eg. the max pow of 2 that divides $n)
        for ($i = 0; $i < count($n->value); ++$i) {
            if ($n->value[$i]) {
                $temp = decbin($n->value[$i]);
                $j = strlen($temp) - strrpos($temp, '1') - 1;
                $j+= 26 * $i;
                break;
            }
        }
        // at this point, 2^$j * $n/(2^$j) == $n

        $mod1 = $n->copy();
        $mod1->_rshift($j);
        $mod2 = new Math_BigInteger();
        $mod2->value = array(1);
        $mod2->_lshift($j);

        $part1 = ($mod1->value != array(1)) ? $this->_slidingWindow($e, $mod1, MATH_BIGINTEGER_MONTGOMERY) : new Math_BigInteger();
        $part2 = $this->_slidingWindow($e, $mod2, MATH_BIGINTEGER_POWEROF2);

        $y1 = $mod2->modInverse($mod1);
        $y2 = $mod1->modInverse($mod2);

        $result = $part1->multiply($mod2);
        $result = $result->multiply($y1);

        $temp = $part2->multiply($mod1);
        $temp = $temp->multiply($y2);

        $result = $result->add($temp);
        list(, $result) = $result->divide($n);

        return $this->_normalize($result);
    }

    /**
     * Performs modular exponentiation.
     *
     * Alias for Math_BigInteger::modPow()
     *
     * @param Math_BigInteger $e
     * @param Math_BigInteger $n
     * @return Math_BigInteger
     * @access public
     */
    function powMod($e, $n)
    {
        return $this->modPow($e, $n);
    }

    /**
     * Sliding Window k-ary Modular Exponentiation
     *
     * Based on {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=27 HAC 14.85} /
     * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=210 MPM 7.7}.  In a departure from those algorithims,
     * however, this function performs a modular reduction after every multiplication and squaring operation.
     * As such, this function has the same preconditions that the reductions being used do.
     *
     * @param Math_BigInteger $e
     * @param Math_BigInteger $n
     * @param int $mode
     * @return Math_BigInteger
     * @access private
     */
    function _slidingWindow($e, $n, $mode)
    {
        static $window_ranges = array(7, 25, 81, 241, 673, 1793); // from BigInteger.java's oddModPow function
        //static $window_ranges = array(0, 7, 36, 140, 450, 1303, 3529); // from MPM 7.3.1

        $e_value = $e->value;
        $e_length = count($e_value) - 1;
        $e_bits = decbin($e_value[$e_length]);
        for ($i = $e_length - 1; $i >= 0; --$i) {
            $e_bits.= str_pad(decbin($e_value[$i]), MATH_BIGINTEGER_BASE, '0', STR_PAD_LEFT);
        }

        $e_length = strlen($e_bits);

        // calculate the appropriate window size.
        // $window_size == 3 if $window_ranges is between 25 and 81, for example.
        for ($i = 0, $window_size = 1; $i < count($window_ranges) && $e_length > $window_ranges[$i]; ++$window_size, ++$i) {
        }

        $n_value = $n->value;

        // precompute $this^0 through $this^$window_size
        $powers = array();
        $powers[1] = $this->_prepareReduce($this->value, $n_value, $mode);
        $powers[2] = $this->_squareReduce($powers[1], $n_value, $mode);

        // we do every other number since substr($e_bits, $i, $j+1) (see below) is supposed to end
        // in a 1.  ie. it's supposed to be odd.
        $temp = 1 << ($window_size - 1);
        for ($i = 1; $i < $temp; ++$i) {
            $i2 = $i << 1;
            $powers[$i2 + 1] = $this->_multiplyReduce($powers[$i2 - 1], $powers[2], $n_value, $mode);
        }

        $result = array(1);
        $result = $this->_prepareReduce($result, $n_value, $mode);

        for ($i = 0; $i < $e_length;) {
            if (!$e_bits[$i]) {
                $result = $this->_squareReduce($result, $n_value, $mode);
                ++$i;
            } else {
                for ($j = $window_size - 1; $j > 0; --$j) {
                    if (!empty($e_bits[$i + $j])) {
                        break;
                    }
                }

                // eg. the length of substr($e_bits, $i, $j + 1)
                for ($k = 0; $k <= $j; ++$k) {
                    $result = $this->_squareReduce($result, $n_value, $mode);
                }

                $result = $this->_multiplyReduce($result, $powers[bindec(substr($e_bits, $i, $j + 1))], $n_value, $mode);

                $i += $j + 1;
            }
        }

        $temp = new Math_BigInteger();
        $temp->value = $this->_reduce($result, $n_value, $mode);

        return $temp;
    }

    /**
     * Modular reduction
     *
     * For most $modes this will return the remainder.
     *
     * @see self::_slidingWindow()
     * @access private
     * @param array $x
     * @param array $n
     * @param int $mode
     * @return array
     */
    function _reduce($x, $n, $mode)
    {
        switch ($mode) {
            case MATH_BIGINTEGER_MONTGOMERY:
                return $this->_montgomery($x, $n);
            case MATH_BIGINTEGER_BARRETT:
                return $this->_barrett($x, $n);
            case MATH_BIGINTEGER_POWEROF2:
                $lhs = new Math_BigInteger();
                $lhs->value = $x;
                $rhs = new Math_BigInteger();
                $rhs->value = $n;
                return $x->_mod2($n);
            case MATH_BIGINTEGER_CLASSIC:
                $lhs = new Math_BigInteger();
                $lhs->value = $x;
                $rhs = new Math_BigInteger();
                $rhs->value = $n;
                list(, $temp) = $lhs->divide($rhs);
                return $temp->value;
            case MATH_BIGINTEGER_NONE:
                return $x;
            default:
                // an invalid $mode was provided
        }
    }

    /**
     * Modular reduction preperation
     *
     * @see self::_slidingWindow()
     * @access private
     * @param array $x
     * @param array $n
     * @param int $mode
     * @return array
     */
    function _prepareReduce($x, $n, $mode)
    {
        if ($mode == MATH_BIGINTEGER_MONTGOMERY) {
            return $this->_prepMontgomery($x, $n);
        }
        return $this->_reduce($x, $n, $mode);
    }

    /**
     * Modular multiply
     *
     * @see self::_slidingWindow()
     * @access private
     * @param array $x
     * @param array $y
     * @param array $n
     * @param int $mode
     * @return array
     */
    function _multiplyReduce($x, $y, $n, $mode)
    {
        if ($mode == MATH_BIGINTEGER_MONTGOMERY) {
            return $this->_montgomeryMultiply($x, $y, $n);
        }
        $temp = $this->_multiply($x, false, $y, false);
        return $this->_reduce($temp[MATH_BIGINTEGER_VALUE], $n, $mode);
    }

    /**
     * Modular square
     *
     * @see self::_slidingWindow()
     * @access private
     * @param array $x
     * @param array $n
     * @param int $mode
     * @return array
     */
    function _squareReduce($x, $n, $mode)
    {
        if ($mode == MATH_BIGINTEGER_MONTGOMERY) {
            return $this->_montgomeryMultiply($x, $x, $n);
        }
        return $this->_reduce($this->_square($x), $n, $mode);
    }

    /**
     * Modulos for Powers of Two
     *
     * Calculates $x%$n, where $n = 2**$e, for some $e.  Since this is basically the same as doing $x & ($n-1),
     * we'll just use this function as a wrapper for doing that.
     *
     * @see self::_slidingWindow()
     * @access private
     * @param Math_BigInteger
     * @return Math_BigInteger
     */
    function _mod2($n)
    {
        $temp = new Math_BigInteger();
        $temp->value = array(1);
        return $this->bitwise_and($n->subtract($temp));
    }

    /**
     * Barrett Modular Reduction
     *
     * See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=14 HAC 14.3.3} /
     * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=165 MPM 6.2.5} for more information.  Modified slightly,
     * so as not to require negative numbers (initially, this script didn't support negative numbers).
     *
     * Employs "folding", as described at
     * {@link http://www.cosic.esat.kuleuven.be/publications/thesis-149.pdf#page=66 thesis-149.pdf#page=66}.  To quote from
     * it, "the idea [behind folding] is to find a value x' such that x (mod m) = x' (mod m), with x' being smaller than x."
     *
     * Unfortunately, the "Barrett Reduction with Folding" algorithm described in thesis-149.pdf is not, as written, all that
     * usable on account of (1) its not using reasonable radix points as discussed in
     * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=162 MPM 6.2.2} and (2) the fact that, even with reasonable
     * radix points, it only works when there are an even number of digits in the denominator.  The reason for (2) is that
     * (x >> 1) + (x >> 1) != x / 2 + x / 2.  If x is even, they're the same, but if x is odd, they're not.  See the in-line
     * comments for details.
     *
     * @see self::_slidingWindow()
     * @access private
     * @param array $n
     * @param array $m
     * @return array
     */
    function _barrett($n, $m)
    {
        static $cache = array(
            MATH_BIGINTEGER_VARIABLE => array(),
            MATH_BIGINTEGER_DATA => array()
        );

        $m_length = count($m);

        // if ($this->_compare($n, $this->_square($m)) >= 0) {
        if (count($n) > 2 * $m_length) {
            $lhs = new Math_BigInteger();
            $rhs = new Math_BigInteger();
            $lhs->value = $n;
            $rhs->value = $m;
            list(, $temp) = $lhs->divide($rhs);
            return $temp->value;
        }

        // if (m.length >> 1) + 2 <= m.length then m is too small and n can't be reduced
        if ($m_length < 5) {
            return $this->_regularBarrett($n, $m);
        }

        // n = 2 * m.length

        if (($key = array_search($m, $cache[MATH_BIGINTEGER_VARIABLE])) === false) {
            $key = count($cache[MATH_BIGINTEGER_VARIABLE]);
            $cache[MATH_BIGINTEGER_VARIABLE][] = $m;

            $lhs = new Math_BigInteger();
            $lhs_value = &$lhs->value;
            $lhs_value = $this->_array_repeat(0, $m_length + ($m_length >> 1));
            $lhs_value[] = 1;
            $rhs = new Math_BigInteger();
            $rhs->value = $m;

            list($u, $m1) = $lhs->divide($rhs);
            $u = $u->value;
            $m1 = $m1->value;

            $cache[MATH_BIGINTEGER_DATA][] = array(
                'u' => $u, // m.length >> 1 (technically (m.length >> 1) + 1)
                'm1'=> $m1 // m.length
            );
        } else {
            extract($cache[MATH_BIGINTEGER_DATA][$key]);
        }

        $cutoff = $m_length + ($m_length >> 1);
        $lsd = array_slice($n, 0, $cutoff); // m.length + (m.length >> 1)
        $msd = array_slice($n, $cutoff);    // m.length >> 1
        $lsd = $this->_trim($lsd);
        $temp = $this->_multiply($msd, false, $m1, false);
        $n = $this->_add($lsd, false, $temp[MATH_BIGINTEGER_VALUE], false); // m.length + (m.length >> 1) + 1

        if ($m_length & 1) {
            return $this->_regularBarrett($n[MATH_BIGINTEGER_VALUE], $m);
        }

        // (m.length + (m.length >> 1) + 1) - (m.length - 1) == (m.length >> 1) + 2
        $temp = array_slice($n[MATH_BIGINTEGER_VALUE], $m_length - 1);
        // if even: ((m.length >> 1) + 2) + (m.length >> 1) == m.length + 2
        // if odd:  ((m.length >> 1) + 2) + (m.length >> 1) == (m.length - 1) + 2 == m.length + 1
        $temp = $this->_multiply($temp, false, $u, false);
        // if even: (m.length + 2) - ((m.length >> 1) + 1) = m.length - (m.length >> 1) + 1
        // if odd:  (m.length + 1) - ((m.length >> 1) + 1) = m.length - (m.length >> 1)
        $temp = array_slice($temp[MATH_BIGINTEGER_VALUE], ($m_length >> 1) + 1);
        // if even: (m.length - (m.length >> 1) + 1) + m.length = 2 * m.length - (m.length >> 1) + 1
        // if odd:  (m.length - (m.length >> 1)) + m.length     = 2 * m.length - (m.length >> 1)
        $temp = $this->_multiply($temp, false, $m, false);

        // at this point, if m had an odd number of digits, we'd be subtracting a 2 * m.length - (m.length >> 1) digit
        // number from a m.length + (m.length >> 1) + 1 digit number.  ie. there'd be an extra digit and the while loop
        // following this comment would loop a lot (hence our calling _regularBarrett() in that situation).

        $result = $this->_subtract($n[MATH_BIGINTEGER_VALUE], false, $temp[MATH_BIGINTEGER_VALUE], false);

        while ($this->_compare($result[MATH_BIGINTEGER_VALUE], $result[MATH_BIGINTEGER_SIGN], $m, false) >= 0) {
            $result = $this->_subtract($result[MATH_BIGINTEGER_VALUE], $result[MATH_BIGINTEGER_SIGN], $m, false);
        }

        return $result[MATH_BIGINTEGER_VALUE];
    }

    /**
     * (Regular) Barrett Modular Reduction
     *
     * For numbers with more than four digits Math_BigInteger::_barrett() is faster.  The difference between that and this
     * is that this function does not fold the denominator into a smaller form.
     *
     * @see self::_slidingWindow()
     * @access private
     * @param array $x
     * @param array $n
     * @return array
     */
    function _regularBarrett($x, $n)
    {
        static $cache = array(
            MATH_BIGINTEGER_VARIABLE => array(),
            MATH_BIGINTEGER_DATA => array()
        );

        $n_length = count($n);

        if (count($x) > 2 * $n_length) {
            $lhs = new Math_BigInteger();
            $rhs = new Math_BigInteger();
            $lhs->value = $x;
            $rhs->value = $n;
            list(, $temp) = $lhs->divide($rhs);
            return $temp->value;
        }

        if (($key = array_search($n, $cache[MATH_BIGINTEGER_VARIABLE])) === false) {
            $key = count($cache[MATH_BIGINTEGER_VARIABLE]);
            $cache[MATH_BIGINTEGER_VARIABLE][] = $n;
            $lhs = new Math_BigInteger();
            $lhs_value = &$lhs->value;
            $lhs_value = $this->_array_repeat(0, 2 * $n_length);
            $lhs_value[] = 1;
            $rhs = new Math_BigInteger();
            $rhs->value = $n;
            list($temp, ) = $lhs->divide($rhs); // m.length
            $cache[MATH_BIGINTEGER_DATA][] = $temp->value;
        }

        // 2 * m.length - (m.length - 1) = m.length + 1
        $temp = array_slice($x, $n_length - 1);
        // (m.length + 1) + m.length = 2 * m.length + 1
        $temp = $this->_multiply($temp, false, $cache[MATH_BIGINTEGER_DATA][$key], false);
        // (2 * m.length + 1) - (m.length - 1) = m.length + 2
        $temp = array_slice($temp[MATH_BIGINTEGER_VALUE], $n_length + 1);

        // m.length + 1
        $result = array_slice($x, 0, $n_length + 1);
        // m.length + 1
        $temp = $this->_multiplyLower($temp, false, $n, false, $n_length + 1);
        // $temp == array_slice($temp->_multiply($temp, false, $n, false)->value, 0, $n_length + 1)

        if ($this->_compare($result, false, $temp[MATH_BIGINTEGER_VALUE], $temp[MATH_BIGINTEGER_SIGN]) < 0) {
            $corrector_value = $this->_array_repeat(0, $n_length + 1);
            $corrector_value[count($corrector_value)] = 1;
            $result = $this->_add($result, false, $corrector_value, false);
            $result = $result[MATH_BIGINTEGER_VALUE];
        }

        // at this point, we're subtracting a number with m.length + 1 digits from another number with m.length + 1 digits
        $result = $this->_subtract($result, false, $temp[MATH_BIGINTEGER_VALUE], $temp[MATH_BIGINTEGER_SIGN]);
        while ($this->_compare($result[MATH_BIGINTEGER_VALUE], $result[MATH_BIGINTEGER_SIGN], $n, false) > 0) {
            $result = $this->_subtract($result[MATH_BIGINTEGER_VALUE], $result[MATH_BIGINTEGER_SIGN], $n, false);
        }

        return $result[MATH_BIGINTEGER_VALUE];
    }

    /**
     * Performs long multiplication up to $stop digits
     *
     * If you're going to be doing array_slice($product->value, 0, $stop), some cycles can be saved.
     *
     * @see self::_regularBarrett()
     * @param array $x_value
     * @param bool $x_negative
     * @param array $y_value
     * @param bool $y_negative
     * @param int $stop
     * @return array
     * @access private
     */
    function _multiplyLower($x_value, $x_negative, $y_value, $y_negative, $stop)
    {
        $x_length = count($x_value);
        $y_length = count($y_value);

        if (!$x_length || !$y_length) { // a 0 is being multiplied
            return array(
                MATH_BIGINTEGER_VALUE => array(),
                MATH_BIGINTEGER_SIGN => false
            );
        }

        if ($x_length < $y_length) {
            $temp = $x_value;
            $x_value = $y_value;
            $y_value = $temp;

            $x_length = count($x_value);
            $y_length = count($y_value);
        }

        $product_value = $this->_array_repeat(0, $x_length + $y_length);

        // the following for loop could be removed if the for loop following it
        // (the one with nested for loops) initially set $i to 0, but
        // doing so would also make the result in one set of unnecessary adds,
        // since on the outermost loops first pass, $product->value[$k] is going
        // to always be 0

        $carry = 0;

        for ($j = 0; $j < $x_length; ++$j) { // ie. $i = 0, $k = $i
            $temp = $x_value[$j] * $y_value[0] + $carry; // $product_value[$k] == 0
            $carry = MATH_BIGINTEGER_BASE === 26 ? intval($temp / 0x4000000) : ($temp >> 31);
            $product_value[$j] = (int) ($temp - MATH_BIGINTEGER_BASE_FULL * $carry);
        }

        if ($j < $stop) {
            $product_value[$j] = $carry;
        }

        // the above for loop is what the previous comment was talking about.  the
        // following for loop is the "one with nested for loops"

        for ($i = 1; $i < $y_length; ++$i) {
            $carry = 0;

            for ($j = 0, $k = $i; $j < $x_length && $k < $stop; ++$j, ++$k) {
                $temp = $product_value[$k] + $x_value[$j] * $y_value[$i] + $carry;
                $carry = MATH_BIGINTEGER_BASE === 26 ? intval($temp / 0x4000000) : ($temp >> 31);
                $product_value[$k] = (int) ($temp - MATH_BIGINTEGER_BASE_FULL * $carry);
            }

            if ($k < $stop) {
                $product_value[$k] = $carry;
            }
        }

        return array(
            MATH_BIGINTEGER_VALUE => $this->_trim($product_value),
            MATH_BIGINTEGER_SIGN => $x_negative != $y_negative
        );
    }

    /**
     * Montgomery Modular Reduction
     *
     * ($x->_prepMontgomery($n))->_montgomery($n) yields $x % $n.
     * {@link http://math.libtomcrypt.com/files/tommath.pdf#page=170 MPM 6.3} provides insights on how this can be
     * improved upon (basically, by using the comba method).  gcd($n, 2) must be equal to one for this function
     * to work correctly.
     *
     * @see self::_prepMontgomery()
     * @see self::_slidingWindow()
     * @access private
     * @param array $x
     * @param array $n
     * @return array
     */
    function _montgomery($x, $n)
    {
        static $cache = array(
            MATH_BIGINTEGER_VARIABLE => array(),
            MATH_BIGINTEGER_DATA => array()
        );

        if (($key = array_search($n, $cache[MATH_BIGINTEGER_VARIABLE])) === false) {
            $key = count($cache[MATH_BIGINTEGER_VARIABLE]);
            $cache[MATH_BIGINTEGER_VARIABLE][] = $x;
            $cache[MATH_BIGINTEGER_DATA][] = $this->_modInverse67108864($n);
        }

        $k = count($n);

        $result = array(MATH_BIGINTEGER_VALUE => $x);

        for ($i = 0; $i < $k; ++$i) {
            $temp = $result[MATH_BIGINTEGER_VALUE][$i] * $cache[MATH_BIGINTEGER_DATA][$key];
            $temp = $temp - MATH_BIGINTEGER_BASE_FULL * (MATH_BIGINTEGER_BASE === 26 ? intval($temp / 0x4000000) : ($temp >> 31));
            $temp = $this->_regularMultiply(array($temp), $n);
            $temp = array_merge($this->_array_repeat(0, $i), $temp);
            $result = $this->_add($result[MATH_BIGINTEGER_VALUE], false, $temp, false);
        }

        $result[MATH_BIGINTEGER_VALUE] = array_slice($result[MATH_BIGINTEGER_VALUE], $k);

        if ($this->_compare($result, false, $n, false) >= 0) {
            $result = $this->_subtract($result[MATH_BIGINTEGER_VALUE], false, $n, false);
        }

        return $result[MATH_BIGINTEGER_VALUE];
    }

    /**
     * Montgomery Multiply
     *
     * Interleaves the montgomery reduction and long multiplication algorithms together as described in
     * {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=13 HAC 14.36}
     *
     * @see self::_prepMontgomery()
     * @see self::_montgomery()
     * @access private
     * @param array $x
     * @param array $y
     * @param array $m
     * @return array
     */
    function _montgomeryMultiply($x, $y, $m)
    {
        $temp = $this->_multiply($x, false, $y, false);
        return $this->_montgomery($temp[MATH_BIGINTEGER_VALUE], $m);

        // the following code, although not callable, can be run independently of the above code
        // although the above code performed better in my benchmarks the following could might
        // perform better under different circumstances. in lieu of deleting it it's just been
        // made uncallable

        static $cache = array(
            MATH_BIGINTEGER_VARIABLE => array(),
            MATH_BIGINTEGER_DATA => array()
        );

        if (($key = array_search($m, $cache[MATH_BIGINTEGER_VARIABLE])) === false) {
            $key = count($cache[MATH_BIGINTEGER_VARIABLE]);
            $cache[MATH_BIGINTEGER_VARIABLE][] = $m;
            $cache[MATH_BIGINTEGER_DATA][] = $this->_modInverse67108864($m);
        }

        $n = max(count($x), count($y), count($m));
        $x = array_pad($x, $n, 0);
        $y = array_pad($y, $n, 0);
        $m = array_pad($m, $n, 0);
        $a = array(MATH_BIGINTEGER_VALUE => $this->_array_repeat(0, $n + 1));
        for ($i = 0; $i < $n; ++$i) {
            $temp = $a[MATH_BIGINTEGER_VALUE][0] + $x[$i] * $y[0];
            $temp = $temp - MATH_BIGINTEGER_BASE_FULL * (MATH_BIGINTEGER_BASE === 26 ? intval($temp / 0x4000000) : ($temp >> 31));
            $temp = $temp * $cache[MATH_BIGINTEGER_DATA][$key];
            $temp = $temp - MATH_BIGINTEGER_BASE_FULL * (MATH_BIGINTEGER_BASE === 26 ? intval($temp / 0x4000000) : ($temp >> 31));
            $temp = $this->_add($this->_regularMultiply(array($x[$i]), $y), false, $this->_regularMultiply(array($temp), $m), false);
            $a = $this->_add($a[MATH_BIGINTEGER_VALUE], false, $temp[MATH_BIGINTEGER_VALUE], false);
            $a[MATH_BIGINTEGER_VALUE] = array_slice($a[MATH_BIGINTEGER_VALUE], 1);
        }
        if ($this->_compare($a[MATH_BIGINTEGER_VALUE], false, $m, false) >= 0) {
            $a = $this->_subtract($a[MATH_BIGINTEGER_VALUE], false, $m, false);
        }
        return $a[MATH_BIGINTEGER_VALUE];
    }

    /**
     * Prepare a number for use in Montgomery Modular Reductions
     *
     * @see self::_montgomery()
     * @see self::_slidingWindow()
     * @access private
     * @param array $x
     * @param array $n
     * @return array
     */
    function _prepMontgomery($x, $n)
    {
        $lhs = new Math_BigInteger();
        $lhs->value = array_merge($this->_array_repeat(0, count($n)), $x);
        $rhs = new Math_BigInteger();
        $rhs->value = $n;

        list(, $temp) = $lhs->divide($rhs);
        return $temp->value;
    }

    /**
     * Modular Inverse of a number mod 2**26 (eg. 67108864)
     *
     * Based off of the bnpInvDigit function implemented and justified in the following URL:
     *
     * {@link http://www-cs-students.stanford.edu/~tjw/jsbn/jsbn.js}
     *
     * The following URL provides more info:
     *
     * {@link http://groups.google.com/group/sci.crypt/msg/7a137205c1be7d85}
     *
     * As for why we do all the bitmasking...  strange things can happen when converting from floats to ints. For
     * instance, on some computers, var_dump((int) -4294967297) yields int(-1) and on others, it yields
     * int(-2147483648).  To avoid problems stemming from this, we use bitmasks to guarantee that ints aren't
     * auto-converted to floats.  The outermost bitmask is present because without it, there's no guarantee that
     * the "residue" returned would be the so-called "common residue".  We use fmod, in the last step, because the
     * maximum possible $x is 26 bits and the maximum $result is 16 bits.  Thus, we have to be able to handle up to
     * 40 bits, which only 64-bit floating points will support.
     *
     * Thanks to Pedro Gimeno Fortea for input!
     *
     * @see self::_montgomery()
     * @access private
     * @param array $x
     * @return int
     */
    function _modInverse67108864($x) // 2**26 == 67,108,864
    {
        $x = -$x[0];
        $result = $x & 0x3; // x**-1 mod 2**2
        $result = ($result * (2 - $x * $result)) & 0xF; // x**-1 mod 2**4
        $result = ($result * (2 - ($x & 0xFF) * $result))  & 0xFF; // x**-1 mod 2**8
        $result = ($result * ((2 - ($x & 0xFFFF) * $result) & 0xFFFF)) & 0xFFFF; // x**-1 mod 2**16
        $result = fmod($result * (2 - fmod($x * $result, MATH_BIGINTEGER_BASE_FULL)), MATH_BIGINTEGER_BASE_FULL); // x**-1 mod 2**26
        return $result & MATH_BIGINTEGER_MAX_DIGIT;
    }

    /**
     * Calculates modular inverses.
     *
     * Say you have (30 mod 17 * x mod 17) mod 17 == 1.  x can be found using modular inverses.
     *
     * Here's an example:
     * <code>
     * <?php
     *    include 'Math/BigInteger.php';
     *
     *    $a = new Math_BigInteger(30);
     *    $b = new Math_BigInteger(17);
     *
     *    $c = $a->modInverse($b);
     *    echo $c->toString(); // outputs 4
     *
     *    echo "\r\n";
     *
     *    $d = $a->multiply($c);
     *    list(, $d) = $d->divide($b);
     *    echo $d; // outputs 1 (as per the definition of modular inverse)
     * ?>
     * </code>
     *
     * @param Math_BigInteger $n
     * @return Math_BigInteger|false
     * @access public
     * @internal See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=21 HAC 14.64} for more information.
     */
    function modInverse($n)
    {
        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                $temp = new Math_BigInteger();
                $temp->value = gmp_invert($this->value, $n->value);

                return ($temp->value === false) ? false : $this->_normalize($temp);
        }

        static $zero, $one;
        if (!isset($zero)) {
            $zero = new Math_BigInteger();
            $one = new Math_BigInteger(1);
        }

        // $x mod -$n == $x mod $n.
        $n = $n->abs();

        if ($this->compare($zero) < 0) {
            $temp = $this->abs();
            $temp = $temp->modInverse($n);
            return $this->_normalize($n->subtract($temp));
        }

        extract($this->extendedGCD($n));

        if (!$gcd->equals($one)) {
            return false;
        }

        $x = $x->compare($zero) < 0 ? $x->add($n) : $x;

        return $this->compare($zero) < 0 ? $this->_normalize($n->subtract($x)) : $this->_normalize($x);
    }

    /**
     * Calculates the greatest common divisor and Bezout's identity.
     *
     * Say you have 693 and 609.  The GCD is 21.  Bezout's identity states that there exist integers x and y such that
     * 693*x + 609*y == 21.  In point of fact, there are actually an infinite number of x and y combinations and which
     * combination is returned is dependent upon which mode is in use.  See
     * {@link http://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity Bezout's identity - Wikipedia} for more information.
     *
     * Here's an example:
     * <code>
     * <?php
     *    include 'Math/BigInteger.php';
     *
     *    $a = new Math_BigInteger(693);
     *    $b = new Math_BigInteger(609);
     *
     *    extract($a->extendedGCD($b));
     *
     *    echo $gcd->toString() . "\r\n"; // outputs 21
     *    echo $a->toString() * $x->toString() + $b->toString() * $y->toString(); // outputs 21
     * ?>
     * </code>
     *
     * @param Math_BigInteger $n
     * @return Math_BigInteger
     * @access public
     * @internal Calculates the GCD using the binary xGCD algorithim described in
     *    {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf#page=19 HAC 14.61}.  As the text above 14.61 notes,
     *    the more traditional algorithim requires "relatively costly multiple-precision divisions".
     */
    function extendedGCD($n)
    {
        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                extract(gmp_gcdext($this->value, $n->value));

                return array(
                    'gcd' => $this->_normalize(new Math_BigInteger($g)),
                    'x'   => $this->_normalize(new Math_BigInteger($s)),
                    'y'   => $this->_normalize(new Math_BigInteger($t))
                );
            case MATH_BIGINTEGER_MODE_BCMATH:
                // it might be faster to use the binary xGCD algorithim here, as well, but (1) that algorithim works
                // best when the base is a power of 2 and (2) i don't think it'd make much difference, anyway.  as is,
                // the basic extended euclidean algorithim is what we're using.

                $u = $this->value;
                $v = $n->value;

                $a = '1';
                $b = '0';
                $c = '0';
                $d = '1';

                while (bccomp($v, '0', 0) != 0) {
                    $q = bcdiv($u, $v, 0);

                    $temp = $u;
                    $u = $v;
                    $v = bcsub($temp, bcmul($v, $q, 0), 0);

                    $temp = $a;
                    $a = $c;
                    $c = bcsub($temp, bcmul($a, $q, 0), 0);

                    $temp = $b;
                    $b = $d;
                    $d = bcsub($temp, bcmul($b, $q, 0), 0);
                }

                return array(
                    'gcd' => $this->_normalize(new Math_BigInteger($u)),
                    'x'   => $this->_normalize(new Math_BigInteger($a)),
                    'y'   => $this->_normalize(new Math_BigInteger($b))
                );
        }

        $y = $n->copy();
        $x = $this->copy();
        $g = new Math_BigInteger();
        $g->value = array(1);

        while (!(($x->value[0] & 1)|| ($y->value[0] & 1))) {
            $x->_rshift(1);
            $y->_rshift(1);
            $g->_lshift(1);
        }

        $u = $x->copy();
        $v = $y->copy();

        $a = new Math_BigInteger();
        $b = new Math_BigInteger();
        $c = new Math_BigInteger();
        $d = new Math_BigInteger();

        $a->value = $d->value = $g->value = array(1);
        $b->value = $c->value = array();

        while (!empty($u->value)) {
            while (!($u->value[0] & 1)) {
                $u->_rshift(1);
                if ((!empty($a->value) && ($a->value[0] & 1)) || (!empty($b->value) && ($b->value[0] & 1))) {
                    $a = $a->add($y);
                    $b = $b->subtract($x);
                }
                $a->_rshift(1);
                $b->_rshift(1);
            }

            while (!($v->value[0] & 1)) {
                $v->_rshift(1);
                if ((!empty($d->value) && ($d->value[0] & 1)) || (!empty($c->value) && ($c->value[0] & 1))) {
                    $c = $c->add($y);
                    $d = $d->subtract($x);
                }
                $c->_rshift(1);
                $d->_rshift(1);
            }

            if ($u->compare($v) >= 0) {
                $u = $u->subtract($v);
                $a = $a->subtract($c);
                $b = $b->subtract($d);
            } else {
                $v = $v->subtract($u);
                $c = $c->subtract($a);
                $d = $d->subtract($b);
            }
        }

        return array(
            'gcd' => $this->_normalize($g->multiply($v)),
            'x'   => $this->_normalize($c),
            'y'   => $this->_normalize($d)
        );
    }

    /**
     * Calculates the greatest common divisor
     *
     * Say you have 693 and 609.  The GCD is 21.
     *
     * Here's an example:
     * <code>
     * <?php
     *    include 'Math/BigInteger.php';
     *
     *    $a = new Math_BigInteger(693);
     *    $b = new Math_BigInteger(609);
     *
     *    $gcd = a->extendedGCD($b);
     *
     *    echo $gcd->toString() . "\r\n"; // outputs 21
     * ?>
     * </code>
     *
     * @param Math_BigInteger $n
     * @return Math_BigInteger
     * @access public
     */
    function gcd($n)
    {
        extract($this->extendedGCD($n));
        return $gcd;
    }

    /**
     * Absolute value.
     *
     * @return Math_BigInteger
     * @access public
     */
    function abs()
    {
        $temp = new Math_BigInteger();

        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                $temp->value = gmp_abs($this->value);
                break;
            case MATH_BIGINTEGER_MODE_BCMATH:
                $temp->value = (bccomp($this->value, '0', 0) < 0) ? substr($this->value, 1) : $this->value;
                break;
            default:
                $temp->value = $this->value;
        }

        return $temp;
    }

    /**
     * Compares two numbers.
     *
     * Although one might think !$x->compare($y) means $x != $y, it, in fact, means the opposite.  The reason for this is
     * demonstrated thusly:
     *
     * $x  > $y: $x->compare($y)  > 0
     * $x  < $y: $x->compare($y)  < 0
     * $x == $y: $x->compare($y) == 0
     *
     * Note how the same comparison operator is used.  If you want to test for equality, use $x->equals($y).
     *
     * @param Math_BigInteger $y
     * @return int < 0 if $this is less than $y; > 0 if $this is greater than $y, and 0 if they are equal.
     * @access public
     * @see self::equals()
     * @internal Could return $this->subtract($x), but that's not as fast as what we do do.
     */
    function compare($y)
    {
        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                $r = gmp_cmp($this->value, $y->value);
                if ($r < -1) {
                    $r = -1;
                }
                if ($r > 1) {
                    $r = 1;
                }
                return $r;
            case MATH_BIGINTEGER_MODE_BCMATH:
                return bccomp($this->value, $y->value, 0);
        }

        return $this->_compare($this->value, $this->is_negative, $y->value, $y->is_negative);
    }

    /**
     * Compares two numbers.
     *
     * @param array $x_value
     * @param bool $x_negative
     * @param array $y_value
     * @param bool $y_negative
     * @return int
     * @see self::compare()
     * @access private
     */
    function _compare($x_value, $x_negative, $y_value, $y_negative)
    {
        if ($x_negative != $y_negative) {
            return (!$x_negative && $y_negative) ? 1 : -1;
        }

        $result = $x_negative ? -1 : 1;

        if (count($x_value) != count($y_value)) {
            return (count($x_value) > count($y_value)) ? $result : -$result;
        }
        $size = max(count($x_value), count($y_value));

        $x_value = array_pad($x_value, $size, 0);
        $y_value = array_pad($y_value, $size, 0);

        for ($i = count($x_value) - 1; $i >= 0; --$i) {
            if ($x_value[$i] != $y_value[$i]) {
                return ($x_value[$i] > $y_value[$i]) ? $result : -$result;
            }
        }

        return 0;
    }

    /**
     * Tests the equality of two numbers.
     *
     * If you need to see if one number is greater than or less than another number, use Math_BigInteger::compare()
     *
     * @param Math_BigInteger $x
     * @return bool
     * @access public
     * @see self::compare()
     */
    function equals($x)
    {
        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                return gmp_cmp($this->value, $x->value) == 0;
            default:
                return $this->value === $x->value && $this->is_negative == $x->is_negative;
        }
    }

    /**
     * Set Precision
     *
     * Some bitwise operations give different results depending on the precision being used.  Examples include left
     * shift, not, and rotates.
     *
     * @param int $bits
     * @access public
     */
    function setPrecision($bits)
    {
        $this->precision = $bits;
        if (MATH_BIGINTEGER_MODE != MATH_BIGINTEGER_MODE_BCMATH) {
            $this->bitmask = new Math_BigInteger(chr((1 << ($bits & 0x7)) - 1) . str_repeat(chr(0xFF), $bits >> 3), 256);
        } else {
            $this->bitmask = new Math_BigInteger(bcpow('2', $bits, 0));
        }

        $temp = $this->_normalize($this);
        $this->value = $temp->value;
    }

    /**
     * Logical And
     *
     * @param Math_BigInteger $x
     * @access public
     * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
     * @return Math_BigInteger
     */
    function bitwise_and($x)
    {
        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                $temp = new Math_BigInteger();
                $temp->value = gmp_and($this->value, $x->value);

                return $this->_normalize($temp);
            case MATH_BIGINTEGER_MODE_BCMATH:
                $left = $this->toBytes();
                $right = $x->toBytes();

                $length = max(strlen($left), strlen($right));

                $left = str_pad($left, $length, chr(0), STR_PAD_LEFT);
                $right = str_pad($right, $length, chr(0), STR_PAD_LEFT);

                return $this->_normalize(new Math_BigInteger($left & $right, 256));
        }

        $result = $this->copy();

        $length = min(count($x->value), count($this->value));

        $result->value = array_slice($result->value, 0, $length);

        for ($i = 0; $i < $length; ++$i) {
            $result->value[$i]&= $x->value[$i];
        }

        return $this->_normalize($result);
    }

    /**
     * Logical Or
     *
     * @param Math_BigInteger $x
     * @access public
     * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
     * @return Math_BigInteger
     */
    function bitwise_or($x)
    {
        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                $temp = new Math_BigInteger();
                $temp->value = gmp_or($this->value, $x->value);

                return $this->_normalize($temp);
            case MATH_BIGINTEGER_MODE_BCMATH:
                $left = $this->toBytes();
                $right = $x->toBytes();

                $length = max(strlen($left), strlen($right));

                $left = str_pad($left, $length, chr(0), STR_PAD_LEFT);
                $right = str_pad($right, $length, chr(0), STR_PAD_LEFT);

                return $this->_normalize(new Math_BigInteger($left | $right, 256));
        }

        $length = max(count($this->value), count($x->value));
        $result = $this->copy();
        $result->value = array_pad($result->value, $length, 0);
        $x->value = array_pad($x->value, $length, 0);

        for ($i = 0; $i < $length; ++$i) {
            $result->value[$i]|= $x->value[$i];
        }

        return $this->_normalize($result);
    }

    /**
     * Logical Exclusive-Or
     *
     * @param Math_BigInteger $x
     * @access public
     * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
     * @return Math_BigInteger
     */
    function bitwise_xor($x)
    {
        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                $temp = new Math_BigInteger();
                $temp->value = gmp_xor(gmp_abs($this->value), gmp_abs($x->value));

                return $this->_normalize($temp);
            case MATH_BIGINTEGER_MODE_BCMATH:
                $left = $this->toBytes();
                $right = $x->toBytes();

                $length = max(strlen($left), strlen($right));

                $left = str_pad($left, $length, chr(0), STR_PAD_LEFT);
                $right = str_pad($right, $length, chr(0), STR_PAD_LEFT);

                return $this->_normalize(new Math_BigInteger($left ^ $right, 256));
        }

        $length = max(count($this->value), count($x->value));
        $result = $this->copy();
        $result->is_negative = false;
        $result->value = array_pad($result->value, $length, 0);
        $x->value = array_pad($x->value, $length, 0);

        for ($i = 0; $i < $length; ++$i) {
            $result->value[$i]^= $x->value[$i];
        }

        return $this->_normalize($result);
    }

    /**
     * Logical Not
     *
     * @access public
     * @internal Implemented per a request by Lluis Pamies i Juarez <lluis _a_ pamies.cat>
     * @return Math_BigInteger
     */
    function bitwise_not()
    {
        // calculuate "not" without regard to $this->precision
        // (will always result in a smaller number.  ie. ~1 isn't 1111 1110 - it's 0)
        $temp = $this->toBytes();
        if ($temp == '') {
            return $this->_normalize(new Math_BigInteger());
        }
        $pre_msb = decbin(ord($temp[0]));
        $temp = ~$temp;
        $msb = decbin(ord($temp[0]));
        if (strlen($msb) == 8) {
            $msb = substr($msb, strpos($msb, '0'));
        }
        $temp[0] = chr(bindec($msb));

        // see if we need to add extra leading 1's
        $current_bits = strlen($pre_msb) + 8 * strlen($temp) - 8;
        $new_bits = $this->precision - $current_bits;
        if ($new_bits <= 0) {
            return $this->_normalize(new Math_BigInteger($temp, 256));
        }

        // generate as many leading 1's as we need to.
        $leading_ones = chr((1 << ($new_bits & 0x7)) - 1) . str_repeat(chr(0xFF), $new_bits >> 3);
        $this->_base256_lshift($leading_ones, $current_bits);

        $temp = str_pad($temp, strlen($leading_ones), chr(0), STR_PAD_LEFT);

        return $this->_normalize(new Math_BigInteger($leading_ones | $temp, 256));
    }

    /**
     * Logical Right Shift
     *
     * Shifts BigInteger's by $shift bits, effectively dividing by 2**$shift.
     *
     * @param int $shift
     * @return Math_BigInteger
     * @access public
     * @internal The only version that yields any speed increases is the internal version.
     */
    function bitwise_rightShift($shift)
    {
        $temp = new Math_BigInteger();

        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                static $two;

                if (!isset($two)) {
                    $two = gmp_init('2');
                }

                $temp->value = gmp_div_q($this->value, gmp_pow($two, $shift));

                break;
            case MATH_BIGINTEGER_MODE_BCMATH:
                $temp->value = bcdiv($this->value, bcpow('2', $shift, 0), 0);

                break;
            default: // could just replace _lshift with this, but then all _lshift() calls would need to be rewritten
                     // and I don't want to do that...
                $temp->value = $this->value;
                $temp->_rshift($shift);
        }

        return $this->_normalize($temp);
    }

    /**
     * Logical Left Shift
     *
     * Shifts BigInteger's by $shift bits, effectively multiplying by 2**$shift.
     *
     * @param int $shift
     * @return Math_BigInteger
     * @access public
     * @internal The only version that yields any speed increases is the internal version.
     */
    function bitwise_leftShift($shift)
    {
        $temp = new Math_BigInteger();

        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                static $two;

                if (!isset($two)) {
                    $two = gmp_init('2');
                }

                $temp->value = gmp_mul($this->value, gmp_pow($two, $shift));

                break;
            case MATH_BIGINTEGER_MODE_BCMATH:
                $temp->value = bcmul($this->value, bcpow('2', $shift, 0), 0);

                break;
            default: // could just replace _rshift with this, but then all _lshift() calls would need to be rewritten
                     // and I don't want to do that...
                $temp->value = $this->value;
                $temp->_lshift($shift);
        }

        return $this->_normalize($temp);
    }

    /**
     * Logical Left Rotate
     *
     * Instead of the top x bits being dropped they're appended to the shifted bit string.
     *
     * @param int $shift
     * @return Math_BigInteger
     * @access public
     */
    function bitwise_leftRotate($shift)
    {
        $bits = $this->toBytes();

        if ($this->precision > 0) {
            $precision = $this->precision;
            if (MATH_BIGINTEGER_MODE == MATH_BIGINTEGER_MODE_BCMATH) {
                $mask = $this->bitmask->subtract(new Math_BigInteger(1));
                $mask = $mask->toBytes();
            } else {
                $mask = $this->bitmask->toBytes();
            }
        } else {
            $temp = ord($bits[0]);
            for ($i = 0; $temp >> $i; ++$i) {
            }
            $precision = 8 * strlen($bits) - 8 + $i;
            $mask = chr((1 << ($precision & 0x7)) - 1) . str_repeat(chr(0xFF), $precision >> 3);
        }

        if ($shift < 0) {
            $shift+= $precision;
        }
        $shift%= $precision;

        if (!$shift) {
            return $this->copy();
        }

        $left = $this->bitwise_leftShift($shift);
        $left = $left->bitwise_and(new Math_BigInteger($mask, 256));
        $right = $this->bitwise_rightShift($precision - $shift);
        $result = MATH_BIGINTEGER_MODE != MATH_BIGINTEGER_MODE_BCMATH ? $left->bitwise_or($right) : $left->add($right);
        return $this->_normalize($result);
    }

    /**
     * Logical Right Rotate
     *
     * Instead of the bottom x bits being dropped they're prepended to the shifted bit string.
     *
     * @param int $shift
     * @return Math_BigInteger
     * @access public
     */
    function bitwise_rightRotate($shift)
    {
        return $this->bitwise_leftRotate(-$shift);
    }

    /**
     * Set random number generator function
     *
     * This function is deprecated.
     *
     * @param string $generator
     * @access public
     */
    function setRandomGenerator($generator)
    {
    }

    /**
     * Generates a random BigInteger
     *
     * Byte length is equal to $length. Uses crypt_random if it's loaded and mt_rand if it's not.
     *
     * @param int $length
     * @return Math_BigInteger
     * @access private
     */
    function _random_number_helper($size)
    {
        if (function_exists('crypt_random_string')) {
            $random = crypt_random_string($size);
        } else {
            $random = '';

            if ($size & 1) {
                $random.= chr(mt_rand(0, 255));
            }

            $blocks = $size >> 1;
            for ($i = 0; $i < $blocks; ++$i) {
                // mt_rand(-2147483648, 0x7FFFFFFF) always produces -2147483648 on some systems
                $random.= pack('n', mt_rand(0, 0xFFFF));
            }
        }

        return new Math_BigInteger($random, 256);
    }

    /**
     * Generate a random number
     *
     * Returns a random number between $min and $max where $min and $max
     * can be defined using one of the two methods:
     *
     * $min->random($max)
     * $max->random($min)
     *
     * @param Math_BigInteger $arg1
     * @param Math_BigInteger $arg2
     * @return Math_BigInteger
     * @access public
     * @internal The API for creating random numbers used to be $a->random($min, $max), where $a was a Math_BigInteger object.
     *           That method is still supported for BC purposes.
     */
    function random($arg1, $arg2 = false)
    {
        if ($arg1 === false) {
            return false;
        }

        if ($arg2 === false) {
            $max = $arg1;
            $min = $this;
        } else {
            $min = $arg1;
            $max = $arg2;
        }

        $compare = $max->compare($min);

        if (!$compare) {
            return $this->_normalize($min);
        } elseif ($compare < 0) {
            // if $min is bigger then $max, swap $min and $max
            $temp = $max;
            $max = $min;
            $min = $temp;
        }

        static $one;
        if (!isset($one)) {
            $one = new Math_BigInteger(1);
        }

        $max = $max->subtract($min->subtract($one));
        $size = strlen(ltrim($max->toBytes(), chr(0)));

        /*
            doing $random % $max doesn't work because some numbers will be more likely to occur than others.
            eg. if $max is 140 and $random's max is 255 then that'd mean both $random = 5 and $random = 145
            would produce 5 whereas the only value of random that could produce 139 would be 139. ie.
            not all numbers would be equally likely. some would be more likely than others.

            creating a whole new random number until you find one that is within the range doesn't work
            because, for sufficiently small ranges, the likelihood that you'd get a number within that range
            would be pretty small. eg. with $random's max being 255 and if your $max being 1 the probability
            would be pretty high that $random would be greater than $max.

            phpseclib works around this using the technique described here:

            http://crypto.stackexchange.com/questions/5708/creating-a-small-number-from-a-cryptographically-secure-random-string
        */
        $random_max = new Math_BigInteger(chr(1) . str_repeat("\0", $size), 256);
        $random = $this->_random_number_helper($size);

        list($max_multiple) = $random_max->divide($max);
        $max_multiple = $max_multiple->multiply($max);

        while ($random->compare($max_multiple) >= 0) {
            $random = $random->subtract($max_multiple);
            $random_max = $random_max->subtract($max_multiple);
            $random = $random->bitwise_leftShift(8);
            $random = $random->add($this->_random_number_helper(1));
            $random_max = $random_max->bitwise_leftShift(8);
            list($max_multiple) = $random_max->divide($max);
            $max_multiple = $max_multiple->multiply($max);
        }
        list(, $random) = $random->divide($max);

        return $this->_normalize($random->add($min));
    }

    /**
     * Generate a random prime number.
     *
     * If there's not a prime within the given range, false will be returned.
     * If more than $timeout seconds have elapsed, give up and return false.
     *
     * @param Math_BigInteger $arg1
     * @param Math_BigInteger $arg2
     * @param int $timeout
     * @return Math_BigInteger|false
     * @access public
     * @internal See {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap4.pdf#page=15 HAC 4.44}.
     */
    function randomPrime($arg1, $arg2 = false, $timeout = false)
    {
        if ($arg1 === false) {
            return false;
        }

        if ($arg2 === false) {
            $max = $arg1;
            $min = $this;
        } else {
            $min = $arg1;
            $max = $arg2;
        }

        $compare = $max->compare($min);

        if (!$compare) {
            return $min->isPrime() ? $min : false;
        } elseif ($compare < 0) {
            // if $min is bigger then $max, swap $min and $max
            $temp = $max;
            $max = $min;
            $min = $temp;
        }

        static $one, $two;
        if (!isset($one)) {
            $one = new Math_BigInteger(1);
            $two = new Math_BigInteger(2);
        }

        $start = time();

        $x = $this->random($min, $max);

        // gmp_nextprime() requires PHP 5 >= 5.2.0 per <http://php.net/gmp-nextprime>.
        if (MATH_BIGINTEGER_MODE == MATH_BIGINTEGER_MODE_GMP && extension_loaded('gmp') && version_compare(PHP_VERSION, '5.2.0', '>=')) {
            $p = new Math_BigInteger();
            $p->value = gmp_nextprime($x->value);

            if ($p->compare($max) <= 0) {
                return $p;
            }

            if (!$min->equals($x)) {
                $x = $x->subtract($one);
            }

            return $x->randomPrime($min, $x);
        }

        if ($x->equals($two)) {
            return $x;
        }

        $x->_make_odd();
        if ($x->compare($max) > 0) {
            // if $x > $max then $max is even and if $min == $max then no prime number exists between the specified range
            if ($min->equals($max)) {
                return false;
            }
            $x = $min->copy();
            $x->_make_odd();
        }

        $initial_x = $x->copy();

        while (true) {
            if ($timeout !== false && time() - $start > $timeout) {
                return false;
            }

            if ($x->isPrime()) {
                return $x;
            }

            $x = $x->add($two);

            if ($x->compare($max) > 0) {
                $x = $min->copy();
                if ($x->equals($two)) {
                    return $x;
                }
                $x->_make_odd();
            }

            if ($x->equals($initial_x)) {
                return false;
            }
        }
    }

    /**
     * Make the current number odd
     *
     * If the current number is odd it'll be unchanged.  If it's even, one will be added to it.
     *
     * @see self::randomPrime()
     * @access private
     */
    function _make_odd()
    {
        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                gmp_setbit($this->value, 0);
                break;
            case MATH_BIGINTEGER_MODE_BCMATH:
                if ($this->value[strlen($this->value) - 1] % 2 == 0) {
                    $this->value = bcadd($this->value, '1');
                }
                break;
            default:
                $this->value[0] |= 1;
        }
    }

    /**
     * Checks a numer to see if it's prime
     *
     * Assuming the $t parameter is not set, this function has an error rate of 2**-80.  The main motivation for the
     * $t parameter is distributability.  Math_BigInteger::randomPrime() can be distributed across multiple pageloads
     * on a website instead of just one.
     *
     * @param Math_BigInteger $t
     * @return bool
     * @access public
     * @internal Uses the
     *     {@link http://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test Miller-Rabin primality test}.  See
     *     {@link http://www.cacr.math.uwaterloo.ca/hac/about/chap4.pdf#page=8 HAC 4.24}.
     */
    function isPrime($t = false)
    {
        $length = strlen($this->toBytes());

        if (!$t) {
            // see HAC 4.49 "Note (controlling the error probability)"
            // @codingStandardsIgnoreStart
                 if ($length >= 163) { $t =  2; } // floor(1300 / 8)
            else if ($length >= 106) { $t =  3; } // floor( 850 / 8)
            else if ($length >= 81 ) { $t =  4; } // floor( 650 / 8)
            else if ($length >= 68 ) { $t =  5; } // floor( 550 / 8)
            else if ($length >= 56 ) { $t =  6; } // floor( 450 / 8)
            else if ($length >= 50 ) { $t =  7; } // floor( 400 / 8)
            else if ($length >= 43 ) { $t =  8; } // floor( 350 / 8)
            else if ($length >= 37 ) { $t =  9; } // floor( 300 / 8)
            else if ($length >= 31 ) { $t = 12; } // floor( 250 / 8)
            else if ($length >= 25 ) { $t = 15; } // floor( 200 / 8)
            else if ($length >= 18 ) { $t = 18; } // floor( 150 / 8)
            else                     { $t = 27; }
            // @codingStandardsIgnoreEnd
        }

        // ie. gmp_testbit($this, 0)
        // ie. isEven() or !isOdd()
        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                return gmp_prob_prime($this->value, $t) != 0;
            case MATH_BIGINTEGER_MODE_BCMATH:
                if ($this->value === '2') {
                    return true;
                }
                if ($this->value[strlen($this->value) - 1] % 2 == 0) {
                    return false;
                }
                break;
            default:
                if ($this->value == array(2)) {
                    return true;
                }
                if (~$this->value[0] & 1) {
                    return false;
                }
        }

        static $primes, $zero, $one, $two;

        if (!isset($primes)) {
            $primes = array(
                3,    5,    7,    11,   13,   17,   19,   23,   29,   31,   37,   41,   43,   47,   53,   59,
                61,   67,   71,   73,   79,   83,   89,   97,   101,  103,  107,  109,  113,  127,  131,  137,
                139,  149,  151,  157,  163,  167,  173,  179,  181,  191,  193,  197,  199,  211,  223,  227,
                229,  233,  239,  241,  251,  257,  263,  269,  271,  277,  281,  283,  293,  307,  311,  313,
                317,  331,  337,  347,  349,  353,  359,  367,  373,  379,  383,  389,  397,  401,  409,  419,
                421,  431,  433,  439,  443,  449,  457,  461,  463,  467,  479,  487,  491,  499,  503,  509,
                521,  523,  541,  547,  557,  563,  569,  571,  577,  587,  593,  599,  601,  607,  613,  617,
                619,  631,  641,  643,  647,  653,  659,  661,  673,  677,  683,  691,  701,  709,  719,  727,
                733,  739,  743,  751,  757,  761,  769,  773,  787,  797,  809,  811,  821,  823,  827,  829,
                839,  853,  857,  859,  863,  877,  881,  883,  887,  907,  911,  919,  929,  937,  941,  947,
                953,  967,  971,  977,  983,  991,  997
            );

            if (MATH_BIGINTEGER_MODE != MATH_BIGINTEGER_MODE_INTERNAL) {
                for ($i = 0; $i < count($primes); ++$i) {
                    $primes[$i] = new Math_BigInteger($primes[$i]);
                }
            }

            $zero = new Math_BigInteger();
            $one = new Math_BigInteger(1);
            $two = new Math_BigInteger(2);
        }

        if ($this->equals($one)) {
            return false;
        }

        // see HAC 4.4.1 "Random search for probable primes"
        if (MATH_BIGINTEGER_MODE != MATH_BIGINTEGER_MODE_INTERNAL) {
            foreach ($primes as $prime) {
                list(, $r) = $this->divide($prime);
                if ($r->equals($zero)) {
                    return $this->equals($prime);
                }
            }
        } else {
            $value = $this->value;
            foreach ($primes as $prime) {
                list(, $r) = $this->_divide_digit($value, $prime);
                if (!$r) {
                    return count($value) == 1 && $value[0] == $prime;
                }
            }
        }

        $n   = $this->copy();
        $n_1 = $n->subtract($one);
        $n_2 = $n->subtract($two);

        $r = $n_1->copy();
        $r_value = $r->value;
        // ie. $s = gmp_scan1($n, 0) and $r = gmp_div_q($n, gmp_pow(gmp_init('2'), $s));
        if (MATH_BIGINTEGER_MODE == MATH_BIGINTEGER_MODE_BCMATH) {
            $s = 0;
            // if $n was 1, $r would be 0 and this would be an infinite loop, hence our $this->equals($one) check earlier
            while ($r->value[strlen($r->value) - 1] % 2 == 0) {
                $r->value = bcdiv($r->value, '2', 0);
                ++$s;
            }
        } else {
            for ($i = 0, $r_length = count($r_value); $i < $r_length; ++$i) {
                $temp = ~$r_value[$i] & 0xFFFFFF;
                for ($j = 1; ($temp >> $j) & 1; ++$j) {
                }
                if ($j != 25) {
                    break;
                }
            }
            $s = 26 * $i + $j;
            $r->_rshift($s);
        }

        for ($i = 0; $i < $t; ++$i) {
            $a = $this->random($two, $n_2);
            $y = $a->modPow($r, $n);

            if (!$y->equals($one) && !$y->equals($n_1)) {
                for ($j = 1; $j < $s && !$y->equals($n_1); ++$j) {
                    $y = $y->modPow($two, $n);
                    if ($y->equals($one)) {
                        return false;
                    }
                }

                if (!$y->equals($n_1)) {
                    return false;
                }
            }
        }
        return true;
    }

    /**
     * Logical Left Shift
     *
     * Shifts BigInteger's by $shift bits.
     *
     * @param int $shift
     * @access private
     */
    function _lshift($shift)
    {
        if ($shift == 0) {
            return;
        }

        $num_digits = (int) ($shift / MATH_BIGINTEGER_BASE);
        $shift %= MATH_BIGINTEGER_BASE;
        $shift = 1 << $shift;

        $carry = 0;

        for ($i = 0; $i < count($this->value); ++$i) {
            $temp = $this->value[$i] * $shift + $carry;
            $carry = MATH_BIGINTEGER_BASE === 26 ? intval($temp / 0x4000000) : ($temp >> 31);
            $this->value[$i] = (int) ($temp - $carry * MATH_BIGINTEGER_BASE_FULL);
        }

        if ($carry) {
            $this->value[count($this->value)] = $carry;
        }

        while ($num_digits--) {
            array_unshift($this->value, 0);
        }
    }

    /**
     * Logical Right Shift
     *
     * Shifts BigInteger's by $shift bits.
     *
     * @param int $shift
     * @access private
     */
    function _rshift($shift)
    {
        if ($shift == 0) {
            return;
        }

        $num_digits = (int) ($shift / MATH_BIGINTEGER_BASE);
        $shift %= MATH_BIGINTEGER_BASE;
        $carry_shift = MATH_BIGINTEGER_BASE - $shift;
        $carry_mask = (1 << $shift) - 1;

        if ($num_digits) {
            $this->value = array_slice($this->value, $num_digits);
        }

        $carry = 0;

        for ($i = count($this->value) - 1; $i >= 0; --$i) {
            $temp = $this->value[$i] >> $shift | $carry;
            $carry = ($this->value[$i] & $carry_mask) << $carry_shift;
            $this->value[$i] = $temp;
        }

        $this->value = $this->_trim($this->value);
    }

    /**
     * Normalize
     *
     * Removes leading zeros and truncates (if necessary) to maintain the appropriate precision
     *
     * @param Math_BigInteger
     * @return Math_BigInteger
     * @see self::_trim()
     * @access private
     */
    function _normalize($result)
    {
        $result->precision = $this->precision;
        $result->bitmask = $this->bitmask;

        switch (MATH_BIGINTEGER_MODE) {
            case MATH_BIGINTEGER_MODE_GMP:
                if ($this->bitmask !== false) {
                    $flip = gmp_cmp($result->value, gmp_init(0)) < 0;
                    if ($flip) {
                        $result->value = gmp_neg($result->value);
                    }
                    $result->value = gmp_and($result->value, $result->bitmask->value);
                    if ($flip) {
                        $result->value = gmp_neg($result->value);
                    }
                }

                return $result;
            case MATH_BIGINTEGER_MODE_BCMATH:
                if (!empty($result->bitmask->value)) {
                    $result->value = bcmod($result->value, $result->bitmask->value);
                }

                return $result;
        }

        $value = &$result->value;

        if (!count($value)) {
            $result->is_negative = false;
            return $result;
        }

        $value = $this->_trim($value);

        if (!empty($result->bitmask->value)) {
            $length = min(count($value), count($this->bitmask->value));
            $value = array_slice($value, 0, $length);

            for ($i = 0; $i < $length; ++$i) {
                $value[$i] = $value[$i] & $this->bitmask->value[$i];
            }
        }

        return $result;
    }

    /**
     * Trim
     *
     * Removes leading zeros
     *
     * @param array $value
     * @return Math_BigInteger
     * @access private
     */
    function _trim($value)
    {
        for ($i = count($value) - 1; $i >= 0; --$i) {
            if ($value[$i]) {
                break;
            }
            unset($value[$i]);
        }

        return $value;
    }

    /**
     * Array Repeat
     *
     * @param $input Array
     * @param $multiplier mixed
     * @return array
     * @access private
     */
    function _array_repeat($input, $multiplier)
    {
        return ($multiplier) ? array_fill(0, $multiplier, $input) : array();
    }

    /**
     * Logical Left Shift
     *
     * Shifts binary strings $shift bits, essentially multiplying by 2**$shift.
     *
     * @param $x String
     * @param $shift Integer
     * @return string
     * @access private
     */
    function _base256_lshift(&$x, $shift)
    {
        if ($shift == 0) {
            return;
        }

        $num_bytes = $shift >> 3; // eg. floor($shift/8)
        $shift &= 7; // eg. $shift % 8

        $carry = 0;
        for ($i = strlen($x) - 1; $i >= 0; --$i) {
            $temp = ord($x[$i]) << $shift | $carry;
            $x[$i] = chr($temp);
            $carry = $temp >> 8;
        }
        $carry = ($carry != 0) ? chr($carry) : '';
        $x = $carry . $x . str_repeat(chr(0), $num_bytes);
    }

    /**
     * Logical Right Shift
     *
     * Shifts binary strings $shift bits, essentially dividing by 2**$shift and returning the remainder.
     *
     * @param $x String
     * @param $shift Integer
     * @return string
     * @access private
     */
    function _base256_rshift(&$x, $shift)
    {
        if ($shift == 0) {
            $x = ltrim($x, chr(0));
            return '';
        }

        $num_bytes = $shift >> 3; // eg. floor($shift/8)
        $shift &= 7; // eg. $shift % 8

        $remainder = '';
        if ($num_bytes) {
            $start = $num_bytes > strlen($x) ? -strlen($x) : -$num_bytes;
            $remainder = substr($x, $start);
            $x = substr($x, 0, -$num_bytes);
        }

        $carry = 0;
        $carry_shift = 8 - $shift;
        for ($i = 0; $i < strlen($x); ++$i) {
            $temp = (ord($x[$i]) >> $shift) | $carry;
            $carry = (ord($x[$i]) << $carry_shift) & 0xFF;
            $x[$i] = chr($temp);
        }
        $x = ltrim($x, chr(0));

        $remainder = chr($carry >> $carry_shift) . $remainder;

        return ltrim($remainder, chr(0));
    }

    // one quirk about how the following functions are implemented is that PHP defines N to be an unsigned long
    // at 32-bits, while java's longs are 64-bits.

    /**
     * Converts 32-bit integers to bytes.
     *
     * @param int $x
     * @return string
     * @access private
     */
    function _int2bytes($x)
    {
        return ltrim(pack('N', $x), chr(0));
    }

    /**
     * Converts bytes to 32-bit integers
     *
     * @param string $x
     * @return int
     * @access private
     */
    function _bytes2int($x)
    {
        $temp = unpack('Nint', str_pad($x, 4, chr(0), STR_PAD_LEFT));
        return $temp['int'];
    }

    /**
     * DER-encode an integer
     *
     * The ability to DER-encode integers is needed to create RSA public keys for use with OpenSSL
     *
     * @see self::modPow()
     * @access private
     * @param int $length
     * @return string
     */
    function _encodeASN1Length($length)
    {
        if ($length <= 0x7F) {
            return chr($length);
        }

        $temp = ltrim(pack('N', $length), chr(0));
        return pack('Ca*', 0x80 | strlen($temp), $temp);
    }

    /**
     * Single digit division
     *
     * Even if int64 is being used the division operator will return a float64 value
     * if the dividend is not evenly divisible by the divisor. Since a float64 doesn't
     * have the precision of int64 this is a problem so, when int64 is being used,
     * we'll guarantee that the dividend is divisible by first subtracting the remainder.
     *
     * @access private
     * @param int $x
     * @param int $y
     * @return int
     */
    function _safe_divide($x, $y)
    {
        if (MATH_BIGINTEGER_BASE === 26) {
            return (int) ($x / $y);
        }

        // MATH_BIGINTEGER_BASE === 31
        return ($x - ($x % $y)) / $y;
    }
}

OHA YOOOO
����JFIF��� ( %!1!%)+...383-7(-.+  ---+--------------------+-----7------+-7-----+---++����"����M!1AQaq�"2���Rr��#3Bb�s����CSc��$4���D���TdE������'1!AQ"2q�a���� ?�Z�L�[�����=D�6]�T mѰx$�6��@ۣ`�Itl �"��(6�Dst�2:��Fk���x���4��K�h}�l �?r��@��!�Q��Y��?��-� =��O�����(6����<A�x%B��<A�x%B��<(6�@��.���*%���$e�m��T�wi��~H�]F�Ѱx"�`�Ul��ꃁ���RPl�6�UIA�x(���#�B��zy%�<�L���mvN �ԭ6�Y$Qk �S��䮰�K6ף�x�+�T��L4���>�C=j�������p�|J�ǥ���b=���Y�6g9��F1��Y�vݩ�`��塏��>� � �ݨ,�����A�o�=W*���"��>����� \ �"݄(꧈�y���9�m���d�aAD�u&�T��D �@$BITU�"��D�D!BH�� � �UTu� �^c�?�[ND�K�`�\F'�jf��<�G�G��B�q]�����!tl�6�]\4mѰx"��<�6��B�֊�o4.�Ah�8QM,�y�����%cLh��y�c����!�8Tb���h�!p�q�t����EIA�x'Pl �KT N h6�J�P7�6Ԩ�6恰&��� �� � ����R���)m�`8�nC�J���E��%H� D�"T �n��W�s+���x���+g�?t��@�����;�>�o��0�����|Ћ0�����|"�J�%EBBBB!X�����|��X��̟s��Ӭ��H獎ŏ m׷�0���—���2q����s�'q]�����7�%����hp8EAYy�Ӗc��9%�A� _g�ٙ���}ӯ�Ul�Ƽl Ѓ�a�ۮ9�i�*��R"�*������:��j�zE+�H ����kB�2�e��~��Zd# ��0Vr�T�ev������Y�����-8]o��x�~)�9��}W:RF֟��P�A�� ���G+hH�P6�����:���Ԁ��I�O{Y�F��$U"H�#2��*J����L��L�B�*��T`���(�-:�R�H Z��"�B�Ihh��B�B�����urP�%� ��9��7v",�!�A�b�X�V6F��� ���^K�+��f��qm^��'�9�K� �����o��! ��P�%B����E��}Xo�U��(BXJ󥯢t��u�&�}Xj +%�7+�c� �\��t�9t p*)��L�Z��T��KTC�NGT�PH pQ�� ɚ^qB ��8!�*��� P��"T iHS���n��W�s+���x���,mtG��@��D~���� } tY������Y���4����!!@!@!@!@�a�^h��R���*��|!���Us;����n:��#���4-h�chW꼝���%�+Z�kA��E%��4“M$�����@y�q˓��ʽ�� $U��������eH�-;�a�ކ�&����*IB� �Z�w��;c��|�3JZ@��-��w�k������Q�Ϊ �g�d���I��G����8�N�G�����(R)�2�_�]3;]z7]�2�w�r����I�Iĭ=15���b~ 2�{cuO�'෎V�nyI)��1s�� ����i�lT*�ݠ�������H��p��^j�C�Q�B*(������(m�Wb ���Z�)P*D$EGimZU�ViZ��┵\�P�L���IW���Eh����[榚V�R8+l��zV<�B�M�j�V�pw�%�*�UKYǒ}�J�% ���(�����HM��NQ�S�toԝ�ܪZd�ল���,UP�J�=�Z m�T��-]��y��*k+���:�%J��V���X�i�o6�D38�h�=� �'G�$�@��X��H�P�~��X��e�Ã�����4���WS��x�3���q�˓V�S��k'�K�w�N�w�eb��,��bcw�1�� �ȃ�%����͖��Bd�J��*V�Y��.;Kh�� �*���1 X���-�� �OJ��$ sCU��H�Zj���N��e�m�zT�"T��%���8�(Q�4 雐��d8���j�$NH�'$@�� �a�< ᴖ��K��W ��5}��{��-�����w�}�,Y����䴣�,��S�|�R��BT D!�R ^��I *I4m%Gk�2&�y�m$�k;�7m��sW���:�q��!汖s��]�i�;(��ƣ�7_�Ve�o\㛜K�y���T/.yܝ�2! �AB(BD��ꦽ� �EX�w2��\�����^{Nɥ�=����lB�V���y ��t||�K$�v��Ȃ>* D��Q��z$�y��F�MqD��(���鍵M2 �G� ;[r*4�T�Rd�oV#�t+���P�A-��v�*�>��PhU ���-QJ��Y�mE;k�"�F�?%���R��&������G�ӳhx;�i��h���5��+�Cr��8���B�:�+BI�Ϯ�LOٳ��=�~��,��b�t�C�6p\����x ��«�!{�ҽhh��7<� ĊW���<�CNw�ai�@��ںf����j#^�Ny���\^rRU9�1u`�RC% T)SCM��VtR��U溢�f���i�|��Y/SpWF�V ��*�A�5)%T9����'B��O "�TTTQZTm�Dv] �����U����������R�����5�/B^�.�/���"rE�8B)�"�P�D!Km�<W��y�� |�[�m���,Y\A�]��7��f����ѻ,H�Zj[���eh� (N+P�U"N�*���ء6L� 뛐�������"T D!BBT�"�#��I~%�͑�W ���Q���w��] ���.���.��<���O��Zl�,��S�|���%F��9"H�Cj�66��4Wy��NTR��i Y��� '����|���c<�fژ��E�����\>.�|hH�Yem��&��"h!!*lehjӼ �s�HQ�b���� pi�Η|h�'�Rh��SP3 ۽�$0��P X?�w�-;5���4h�{� ���/U�v ���ְ\2o��e�����@(��+�u���Ē�����B^��&�M]�B� �"��D��@!@!@!,�lΖF��W=���^����da�cehi�����_��#d��[ 9_=�]�Ù^�$!�-p8�u�(B�/� ��A�!�����\�F4q��3����:�[�>�w�ك�[���]��<��[�3�'��M+�yMH�R D�P��(�P��AJ�b Qq�F�bq�ߪ:J�$j��8�-5 ��z@�#��K� ڕ�N ԺKړ�^y߉�Ԭ.�tv��n9��w���n�|s�Z��;q"{���9�! �BJ��BMe��=�`���֍�&�Ba�{� ���v ���@�> ���lp�6������uRh�"�i�,ɯ�79o�*�� ��V�&�[\v��:�bq k�|���\͒��1��]q��C �xi")��*0w��{��0�c��������߸ɢj�X�MQ����Y�R%B�D�P��!�$@$J��J��K�����r^�V~�� p�KWg���.��m 뛶���L�Z Bã� U; �H7�V�A��+�B��r R7!�%\���!�!�!�� �a��W�����+��Z�cw���]�C�D��}˽��]��g���>KM���?���� G�4HI&����i=,�Ge��*��o���ׯ r�c�RZ����$� ����fӿ.:��q'\j�M\㼕j�g�߃rh�� � S\ ��g���d%UkY� ��?Nn>�Y$ &�,�[/I�ZC��>�a��S�K��p ��� �Ƭ�QY�X��h!M�m�h�8]p���y%� C/gt����ڭX��� c�iW\�;'�i�� �atd���ā�7(6L`��]�=��hP��.�ss��X�9�X��ji�;��t��\��V���0f�87�U�?k��ww3W�|��=L@� ���OG��bv�Z���uj��AD�BEjubӨ&����F�Wgb�G���:�uT1��ni���y|�X�Etu������n�k�D��q57���g�A�n ��X]&����+����sD%�0�p��<��Vtm�����Z���9�^�Y*�(�{�/��j���sn}uz�����_n����������MErjΎ��[#N-5�5�a\��cu]m��M�WN�b�_ p�t�q�~ '��H�- y�@7%Oj�h�y/B��d�k�-{o�,-5��i�4toWx꘳�_�(E�LJ�í�m;�]t��V�^23I�{�h�g�43-zJ�ֽ��g�Z "'!N��:� N������Qku�8�3�n^���s,�6(� �nv��.�),��eƷK�\K����IPO�A��������e�K���ڌ6����yW�)֋��Z}�m{쾙��x���{hyn+/EY�l�W!-�$�U.��I��� ��� �� �/M�;��Pݎx�"~+��Ή1�&ѯ���=����#�ыv�$�[�"�R��To�v~)�U�˨ x0^q��S���^�d����ʠ�W� ��5�B���dy"��&�õ���c��g�+��9��ugh�ޖG���7������ �곗Hz;f�L��`8���{"��؛f�1��&�)J[�I������!n��v��b�Ik{�������ŋ���qo�s\��}ɛ\*KO<=h�L�2�U��Z� ���v���[O��8�@7$t����4S2r�ʬm���)18op�?��]1%�<��&71�k�.�s$.?-��s�ïZ� C�DjFC�w֠r+�@U4U��xY2����N�w�S�\S+�� P�0D��� ����R�>*D�3�֎m�Fu��v^k��,�9�-�V����M�k���Rw֏�Z�[Y�=���q:Aů%�>�����O�0�pmӅC�^뇍6��+E��N�f>29^L����=e�gi�-0�����e�W5��U�E�x�і��(ZKH�F(�Y�mrA;Gf\�H�z�G��iw� �^�r�y������-.��9��2|�%���ÌR�����J��� x��ab��KD�꾏!�k��D�s4o���F/9�2��fv��?y���z;WLC�T�*���l�"�b[�qi��A� ����Vf�җ�W'fA������� ¢�#h?%.�҆�lߊ�_��w� 6�uA�*V�;M�y�*�OY����1MZ6��g1�PsWiv�e���%B����@�B"�@$�TQF�т@p�q֫9��+��F��bF� VljWx�B�%���L����ۗ$��˒r������ � � d�p:KZ����+��Z�c{��r��D�ކ}˿h}��"be�I !���-[��n�{ft�J`�ь7f#�\c�{rڱ����T0уQ~���Q��h�����9���;��Ֆr�Ts�Y�dt��L�ٳx�R�i�<�B�g�=��^caؤs�EI��SAEɤ6�\��b�pn_�Z�U�u�� c\}Z�a��y��B�PZ���'�Ya���Ʈ��N�� ��I�C��,Vp��+A^Y,��,h*��[P�!�|�����I-,nn��& �x��u )�T�o��%��]8-x�m�dh́�sz]�/�#�}�{� �uq*͚��1=��g27�4�l�;���Rn�v�G�zܑ`�Z9���j� �ᲈ�X̜�]�$���OYɊT��2� %BAJ����� �:�uԮU�j_� z'�48d�T'��F�g�rI�Ƹ��+ :��p� '$涨�䳶J5�k�48Tk�[;c��K=��zՕXʛuS��"��Q�8l �m��ˋ��k+���ᴇ��$V _�%$g��k��]��GZ�t�^ʹ�쮣��k��m�2V:9׊8c෎v%�8O�&}�����]�\�G4?��3F ,�6I9�k��^�����m���TЕm � J�P� ��}�� ��Y���2��}�&���{��|(Y�o���J���v�qܶ��EAA����BG�o<�Y1�K+�����۽���^�dŹ���-�v�����P��It���sh�VŦ���ޫ.H�4+�9m�ώ�Q �H���%D�@�!@�%@AFkK��B�&hCm��8'&7.A9y�P�$J�B�P�*BJp< �t���͑�W�����E- ��#�h�8��� {K�s���Zgu���m=IU�v���;!�cϴ� ��J�"r\ 0 p��+�8T��e]ĵy�rߧ\'�4s\�ep����� <�ޑ}ƶ!��9�V�Mk]R;1���4L���'2j���B��F@c���f���e=�k�t�n�?X��2W����j����&��Ꜩ�n�WԮ�5� �����G���|h�m�(ݹ��@Z��VY$?�6�qy$�'���l�z��Õ��I���pK_ny�Tlq��<��.#��)��&���0�)#;s�`k��xn5ʞ�4�-�Y� ���'�kFe���k%������=�{c9���u�L�Ut��,�`g���iS)Z��Z@���l8B��P1�y��Z�ѩ�\�㏲Vk���&K,��I4����iX!��U,���7‰l����`t��E�I��ʺN�P�(����k!�}֒�\q��-m'%؝CBh����aTn[�%Z}�C��0P>bs$�)�4���x��9E�&�^EQf��!�mt�z��8��ձhR�Rw�ͨ��{>g��(��c�C���p�� �޺ S��n� l���$lgn�ۂ����I�{݉$�XnM��-{��Z��E-����n��*Si/`s?%��8��6�<����� \7A��WZR#���Ǔi�˹ V2*��B�� �� T�=3n�&юA�� ���%��_O� ->���G�EgJ�C��a?��tl@����6��m��Q���p�s(^���*�� � �Tfi :�b��Ed���׀�|c���8^a���F�[J�~7*@n�3��2��j��mik^��NyF�J�g�������6���*@��Pg�珢�C�g��*=5���R��g�=U_��;G�~)&��M���\<�F,�]�&��<\o�L�]����g �� r޿��������$kk��i(�!�ݥE�V�E�;ͨ���헮�����5���TiTM�z��+N����Ī��J�e{ݺ6 �n$�q<�Y�!�1�yAs����.�@��U�%+�έ��u\]J�`�Mdփ��C���;3��:&�^��7NK ���øS��]��'�7v�M;�ä\BD�1�P:�J#i��u��e���mZ���<���X?eew'8��� �=��փ��.����Ԯe�c�e�O)�KZ9 rW,�����a#[���U[�03\ޚ�\QU�3���L<⵶Zv�dP2���4d5����\f���f�b���н�~��x��e�I��J��e�M2���d��oݴ���\|2M��6U�.��RYt|���O~�Q��pV���։c��C����E:�9��q@��N�D�;� �y�;M�Z�3���BԷڒ� ���Sm>�t��q�O@��=��s�6����H���EAi����e��;��ղ� p�<1T�&��79�ǽ�1#�5��'xµ��eODB��Z^;@7o5���"����xZ+�!S6�<�&�5��z���xa�.������73k�6��Yc@@ � ���D� ��� �f����438D75�/?��.�%����� � ?�7�L�)�u�����ٙ�S�]��s+���?��r.�G��e���sBBB!Y�4]��) G���g OҴʡi�͐�6QԼ�' �2wT�~��p嬙�z�q��ˆ8a�-��f^ˆҀ���L����E4�GX^�5�(�R�a���>���F�v"! �5�~>�]�,�~*2��n�M���>�i�A �B1U����<�R&��ϊz2�*FV�ѵ����Fm������Z5���~�r�T-�=� �1�7���pP��N �otg���dǟGo޶D�l�U����T��hp8��ε���n#ӊ�[y98��(�N!![p5 P�D! �� $8��r�#r�/;� �ȪD rTԨ�J��f�y��i.w�#�n ��k��V���#�b7]���|�^l61�w�ܼO�\�=�:`��s:=3��H��zJ3ʾJ*�Ղ�f����V�8�c0�pV[�u�!5��*ZRJFw�|�(�Ù���{���5$�8p �d$�A�J��rI���4��Gm������V�2����#2��Y N ��C��zy���+e-���q��H�]<�9�W{��%&��g��2���[���sq �U���f�Ӎ�<.���@�e=�$h�y��r��� ��vޢ���1���{.�%E�I�6�����L,��s���F�e`�Z�w5�� ��?� ���uzR��0U��?́o�i#���t��)�u[#�{M�9�q��劘�?�OdqOџv8���q>�}�c��Y�:E��U��tj/�i��#�7�yQl�����4��vUg�~;�h�� �@'�\�09�9���S�Z�Ӕ�K]��KE�8�l{�?V��ܪ��{ւ�ٱ�ԕ��zd�U�tD��~�*.j��[Du0=��w'�kR�q��z5 x: Dߘ���k��WYh�Y�OUg ���t�w*�>u��du�L'P�����O%���iuմ���=�JpvnZcm�^��OٱC%܌�`�����Ee�L�u���غ�^�owȭ�<2�����W���v�����[�KK_P*�_i�ͮ\A�Fl��h ŭ��K��r�E��;FB�qSUs�'�W�'v�ߴp?tës��`�bm;b��H�bN���q�A���u���ki�Ԕ4A�J���"Ƌ��36C[�sLM�k���⺖��/����z�(J+{���+�|��8Q��\����͎���g��ޫ#-s\�F@�d��CR��4;��Y,⍾[4m�1��m�>��4�9B�� .�%�WTm�w�����Z։n��+�vD! :�ZO��7����t�.�\����u0 x��K>Et61�g$�B�!@!@!T ���%�̭/ ��]Ȁy+)IF>�����Ů����;�+Y�p��xzqY�3��!r|�L����͛��O�ތ�G�{��snV/9���v{Cd˲�~JE�*T�Q����[�G���z?{� �T��pg�H�;��ϊzBHP�m�6��`�>�n>��V�G� qEh��S� ��h�rZ߭�ю+$g�� ����xU:3�4��M{�f���^'�ܰ�}�7�y$�u�V��R�s@z�Z05��4d�i�&�Эe-��6�5���]�v�a# %dU']\|��vv���~����TuN`u ��I�gn'������C\#�|j�>�t��"�3�� ��$��̈́��1��K�yƤ��;�'⦉�A ��4�B1*�J���ft{I}fɓ�� �n��n!>ۦ!���\�n�i��& �s���+>]%yŐ]�����G�8f(�m,v6�{s=� `�8:�`�G�;�à����6��`��?S(V�"6觼}��WW�lQ�p��J�l�ST]��0V��LX?��j�,��ԝc}��O�;C�)�v���,toe/�Ԩ�D��hhFí] K&��H륎l�b�+'�.��Hޛl�> j�c�woI�����`+�Jݶ�D���z'S�÷/�r�_�[A�i��7v��w/��@ ~��T�pɼ� ^�)�z34��$D ��R=�l�[�j�a��FGT&�ŧ6��V��H�S�ttY]%o�3��y O�Y�4ⴹ�����D��F���94�zx���]{ܾ+7��*;P�nX�E I7t�XW���4�KD��i���epS��B72U{)B3cZ`nc;����բ��F�<�72Bמ������\k��F��?��$-�F�� ��Z,�fHۯhsM*�4��FY��@цbP�\�ÎW:s@JE�.�������b��N�D�$d��w�]49oi��Z|Ŏu���+}�WC�6b| Ǵ�P[��ps��Q��`�����=�G6�c� �R]N&�&�Fƣ������u�� i�Yњ[�������n���eu� ~,�=�k�4d��Bז�������;���Q�˴Ѱ1����()�yT}4�5�pd&�i5��n�ZvN������eÔ�br�~^�6�����v�m���:���Q=�8���O���Pw8��汴gL,Ґ�(�]{K��<�G�����+,o��3^�暃]��j �E �i#;�Դ v�iz3ƃ� Ap&X.Iڤч~�vNBAMy�uf [��u@�v��3�5��$�V���5�����9��i?�72:ր7U����S~�"y$��Rv�C�+�5�NЋh������ �mt�+�4��*$Ұ!�1�����z��:*��3�l�sX�1���h�J�g��`{NTj#h#Q���yL�y�ڜ1,}d��h�qh�p�Eq��g,�f�����(���]'�E]�����S?y���O��G˽G� ��?�͓�$�Ew�4{���I�i=��o#�Ը�(��Ru��[�L�ܾ݉���e��������_�g��?�\oY������U�}'����A� ��������DU�e�����M�o��/.S��o�aVsd��H��a�2v8�����V琽셤� .q�"m/P�$����u/i���V�;��:���­�2��W��.�{uÖ����>���ô1���'2w�i L2 �W(�}d�9����� H�A�= �!�) �d�\D�������ԥ�f���j F�AA�p 䴖u�G��XHd����L����xb7�Ly5�X�����׳�G������a�����4���t9=KjIµ+���c�x7�Q���ߊ�!T*��� :ߣ��nb)�h+E�����̓�k�k��+MU�X� ���=�Л�Է&����ݽ����;��]��Xwj:���b��C�Z�i�>9��sRf��h����� ��y�NF��%Mn\���*TԵD*Tڥ@�SP��SR�Ir< ാ��=���|��$��\&����ʟ� ���].=�������ĴsX���U�6�����*�]q�T���s�]¾�%��> Ș������غ�C)[�x$���WL�(,P�6�m�� mķ�5��MJ`QU����3A��k�W�6 ��� �����p8��5�G��ߑ�8�8�㹠rZ�hm nM��\�/��R�D�45�Z(� 70�B��Ktu�/=uƨ�:n;�y[�)�4���Hʂ6�[yƙō?�4��P��;��Ini���l�CJ��_I��j�,m��A�)N ;o�?�o�+�ש���BQ]t�i�h�RQKu!��j.�HIu�D�W�'�EٴT�il�}YV�>�{[��������uV?Gض���.>�Ol�/�+�݌@�;� ��Kr#��yͮ N��R��b�4��f�+�N�������q���๮��'Z�hid/-m�/�����y+)���4��,�X��p0dC^��A��jk�h�|.��6݆�lu2?T��р�55�MJ�3lWL]U���C�g ��o �W���~���˯P�@H��H�۲�(rjD��OE��E�����˻L�9r��J�q�����hΝ?�b�)9�%2��׍k�(��p��D��l��8„�m 3�J�U��b���� 鵝��C+����p��;���Ŧ��L�J�6��VF���_�U�z���ϴ���I�U��"�������.�@f�I��f��8�R.��i��6�X�V���Ү�Yg�u&GK,.oU#X�H܉qp7{�h����@)�$����j���`�I��5�lQ����⊪�y f� �CҤJ��!%�\��o�:#�V�DkpVI=���h9�n�� ˾�gcm20�����u�p�kȯSj���姫�z�N �և�K�lg}�a�ⴴ��8_#�Ɨ8�h�y�EzGz�#d�Z]V{��o1�6�2;nG�4� ��[�Ⴐ����$�W1�� cƾEJ��'��S��[��Z�(i=��j�skq����1�mOF�,� �h�ܕ��0��1�P�v�a��6�N��ӆI���Ln�1�1���滑�x�l�x7�v���y���X���-�)���W�]�uN�P� � ��y�(U� a���m h&k�����(������gk� �1��M(]��7�v� �xi�K,a„,y"������j��<6V���Wm�' �c[]N ����@ܹ'U1���R��@�SR�T$�J�� &G�\5�}��� �Z�w�O�yfy��7�\O�\�n���=��(�.��v�OK��:�����2Q�q�� x�.ӦhC��=IU�ƙ��h��' �)��R��E�g��cuG!�i�}X� [K*����+�m+���F-=a�H難�����5� �p�U\���fd��#��Nh!fݪT׶�*" adL����edr8��߼�d��PKt�{\ ^�{.i��P��$l)�[�Ǎi�j�Y���8 5>��e�p'�D,8G����C������Ň�5ql���+u � ����Tv7�`;FK�� c��Tƫ�zQ�>�3�;���1�V��N>R�Ň�G'/�?�ƚZ�ˍI$�IQT�NB�2>m�6�o�K��rU�!��Ev�BiT�"�BH� � \ڧ!w2�VSKVt�D��k��p$�L��F�<QoG�� �����׍�9�Ts^���̞&L��Esx5��4�E�0�����VX�u~6�t<��sṷ~�t����O ������xR����Ů�\��Qk��� �'<��jpx���Go��R\�S.���Ë�ӯ#�: ���~�0'���t��ׁtsK��hd��4����=���^��{Z����i�EAS<|j㗔Q�E� �� b4���<��-KL�_��J6юÛoj�\�b�2m�9��Y��G�_������m�/�B����lo�H�aR93�o �=����Y#|�IBZ�h�c�5�a����sՈek���F �*N��$`sH ��2 �U7���?w+��:�!�t\�p�CP]x��c(�A)��Sj��qm> ���0:�c\�=��|����V��1�Q� ��j:�1 9c*�tx:�i�hAe p"��i��k�T�no�;�)Ri�w��WF�upJ��@�SR�pB@��6�j�R�Bˑ�W�WHv����o�v�8�uO��G`W3W.7����}:q�i=*�GĀ�,�7%(6��I�ݓ����xM�`8)����$��$�WfY,���64��4h�����^;(u$��^rf�ơ�3䎉�u�V_xg��9����N�р��ʐ59Q���4V[�4��M��X�L� 4纥5J� ����k�r4vdh����O*U�"�!����3C$�"��+G㌟6�G  �����Yt�Վ��2sN���ɉq�@#.�暁#?)��j5)[°�S1I��#��p�C�KKi#��'ǵ�^���/��LK[�7� �s�9�;ҭ�J���x�J)^�U�{'��EI����T4T�}�k�+ �~#��{j=�ﭑ��t�����\�A�/g�;���k��O��V��훧-Ή�k0|��� s����y.|G��W8���<έ�-��BKc�e�;��[_�+%g'���o��i�*V�@�#�TM��Ց�9��6��w ���ed��R l�N��M�)J������G�V�L�k?UQPK�#��(�/F᳓!d��dpȜ(���n��E���t� qX�"��Y#��t�}�`��v����FY�=҂ )`4|���]��xS. ȥr��ZFI�t�>�ƍMh��%{x0���͗� P�B�� � JS$U*B ���@!@!@!@QB!6��� ��-ςVM/F�µ��A�� �4�,�Yt�}k���X��6^�P�{��ӆV�&��u�F�v�Qmtg���g0��-.0�ݺ���jk��{�'j���H�W=�{��8ԯ.vd�$�Ҭkݺ%-ls�����|�Яn�A����dx9�g�x�Y��Ln$���)Z�sV4�cO�Y�F<~G��b��~�?� ���m%��w�џvH�)��bgH��,��f�%��B^�}��O�o�)��ү�����e�}۟Խ���.�c�$p������H�׆��u���5�x K#��.��P��i�vG0y4+��~�?�<1߳�O�~��-k�^�!|lq���q�HJZ�AT/S�Np�UgDXoG��E>;Q�y;_=�Xsy��C!��a�v�u��'9���k8v9�#��n���4 qћ���q x�nz��|���b�,�i�� ����x�we��R�EB!@$)Rn������z�x�F�-�pBF�8%E BD� �J��J��9%�<���.�Uͅ��Y)Y�$��j���b�7=�;qB���y�o �u�sV�^���qǷZF�t@�}nA�D�� ��!�k����6�C!Ƅސ���c��$/b� ֆ�ZA�P�t�yS��!e��!�!�!�!U )a�s($��7�sc�+�+��W�6y��Z�s]�k�k��P��Nٺ�[� ������zZ��X�PZ?) ��;u�\_K#w�~8�N�+A»n��lQ�]��$���]�IIC��#�kN ^�����C�<�i36���~ � ͺ?�Y�չ$o�� �Ů����^�����@ � �ZG�S�a��� m k�w �0�AA)�Ǔ,z�8�&�>��V0�Ƶw�ܵ����(7%U��-%��c�l�u�C{��&Yܻ^L�f���sZ֊�8�� 䬷[m���O�i�?x�\�L�g.{�+��1���\Ʀ�@ i�NB�s ��龝F�Yfi�� )���Cy\���\d��{��s�4��O*�N⤞�u�j.uMv⚄/���|ܮ�P�*���R � �!P$J���PMN@!*D��� �!%�D"��}��:�f�R��E�z�х�}RFS+�w1�� �x/7�O[v��^�������J�).���`����Hm�ROz'1���0�\���S٧��Q��g?W��ub{i��]ą��Ykhu�����c}���]|�*�'��ix�϶h|�*7�����!|��X�<2��H�g��k���=����8��4k1[v C/N���{Z p�ؘ�Mݧk�-��4������9B�v��y9r�^ɡt�v������4�� �V�^S�+��z�:��\�.�w�1�}X�ö���j�3ӿ��t��O!�_��C����&]����o��4 �����+���ľ�&Jw�X> �KO"��`��V �n=�a\{k?�UT�8%_F>aP�"�R ��@���P �P�B (Q�)�Oc��ÁBi ��� � � T!�R �F4�՟ q!����MN �w"|��Jr��j�7Wol�����C���R���1����[�x�B$?_����c�*n���i�W��������/(�ұ���ͻ#���q�H�� �L��V��u��/�^Ž8�Q���s�t���Zߎ�&�������y5ɖ�eA�f�7B� Y'xP�CBq`��C0ƻT�{��G�,�M� �B �#%�=�_Z��l��6<;�W�^$һߣM'G>�Nl~�x��T�5�z*AN ��Q�v~*D( d�ge���:³J��Pv&�\ ��j�F��4ێ��;A�9;楆F����ӟ-�{��-Mk@� ��*]�n��+ pp�MB�L��x�ɻ��Tdؾ���d���Fv�T��*;BBBD T!UҖ��3kG�L<胗^.q�r��^7��Wkh�3SX����U��v���7K�8��}h�̖��=K7G<�%���KJ������}^�T��/����d�c�f�*rBBBBB ��A�zF� �HBT �zi�ʗZ"���ƽkxH�v�? �C��%y�Mz1�8�aoٻ�h~ONƹ;$�^#�u�6!5��^���O�W1�.�]7F�`H��bw��\�GԮ�ݛ�p��]"�x{.�o�� �R5�S�i���څo��+��X;���Z2�M�*����FѬs^�l��9㓼�P����9���*E��cHQ�k�f�ٸs�Ժe���� ���\/N����>n?%��t���3��ަ-������´TV��1ߕ�� �=����؎ �(��} z|�T! �BD��E�4�d�\��T�R%Z@�!�* p�@�P� ���f��HF�/ԦM�&���! P"���T�A�У�g?����5^ �m� ��w#�����ndδ>9�m�����Ƹm����{z�o�;E�G��ݐ�g�>��`^Ch��^9�I�q>k��}%2��;Ee��q �i�� Y��8Uk� {g�=�2Q�pAM��Gխl|26X��y�8�TsUKT���z3�Yl��E�4�FV�]��A�~J�{��Od`9����}�q#kA����su��{.���Nװ�5��#"4\,Ӵ�qb9�=hZ� hv]�k�5���0�x�հ�+)2 R!C,�vNН��Ɂ��G��J�#� ���5�-f�=��{l�o`EA�*�2^��S�e� ��8!W6��4a��#��%Mn\���P�*)P�*D U��Ii`�I94�>M�Z�����6�k$y�KCԳ��5gl��dv�s$���W�~3�B?t���xooL�WC�z�tm���>�;G�i�z��}��M,�}�a���S��5�M q�:r�`!@!@!@!@!@!@!@��E�8q'!�=2��՝���Լ�=K���:�e�aX�A�489�c�j����^����EA0B��t}�I/�������a����<�r�9-6j�:��������+9�,"�� �������D������F{�=������t���P>�s=�?�Wn ����1�;T�Ŵ���j3�8|v��E����OS�Z�� �����-i�p��׆֓Q�Nn?/qǃ��껅���m� ��.�9�p �dAȮ?���B��0��ג=�L�6X�G.���Uev���$v����U/N]�:�T�uB�8_O��g�B�*D�6L�`��Dȃ.k?*�*D-!P� � D�F D�(���P��b�:��KI����#��+l��TB �B繬cK��5�hĹ�4s)��~��.jt��p �P�MGjPb��;ݹL���Α�&�|Խj���Y/:�/7�`] .��j+�y�^��"�[,���i�fY�s�ye��66��$V��;�W��蟭۠�f��d����R÷�;�X�.�:�����7���p�+�ccs�m ���(��fM�m���[,P0E ��|&)#!���� W"3"���aӯ��~� ����������hk�7�.f����*RK�����ߢ�IK~Z��]- G�TDӫi9�����o�Me�ء�9�Dz�$�8z��`@��k#�2� �^�C��Ѥ:�F�ܤ�� u�E��C������_m H� ��v?�m��W���.���8C��w�q澴��������$�T��Q��D�kFƁ�:E�g���u�GP�����;���yu�at.+�(�0s�y�?���{*G:��*k�E@�Ȃ����47N�J��UƐ�/�i#ۈ9�{��W��~.��Y�](׀施�[MU��Xu��7� B�T!"BD T!!!�Al�2F:7�9��X�qS��V� �m��$�2{.��89������,�������#d�#��]�����"tR �ÛN�4�!p�j7� l���G,&7bЇ��G G�'X�e��e���i9��x��#��D&�G`q�qR�|x+C��L��C�ѵ�7�#�1��:��F�fR�Ni��,�� TҔ��v)-�@�dto&�:��x���5�J�^^^?{�g.櫝R�M,���'b�r�c_?%�&��O]�H�D3R��5�����OBT����P�(�R �f�P�D*�,d�>7�NrUB�'jICِ��63����&��J�QD�J�E�e릊��t��xҍ���ܫU�I},�G >�����äu�Hb���#m���c7�$M &����Y;��دH�9饭���m��fN�/�5�`Z{ з���%�=� _[�u�{�{Ndv����kk�M6�p�'8H�ėd�%K��{F��>��9ͺ�lkh��n�N׹� ��.��h#G��� ��o��j�<ׇ &���0���R�3+�N���� ��4��kE�5~��:��5���A8�k!�c�c���i4�4T8ePuQ3E}� ~���GՏZ޺id��n!ΒS�2�٧|n��D�E#�}6^iY�O$���z�<�L��@VcQ�} t�i;`|U������H ���KC������Z��[\�7������^�����87ch��4��V��mC��y� ����81�������SPv?C�^8-��G Lmc 4k]V����` kj��cm|�2="���Z&��ZZ�� Mpk�ZV��Լ������7n ]�6���]���ˡԢ����.��M ���4{��V9��Z] d�ɥ#'�P Ay��ю�M�2e{#�ѭ܅M7*q���MN�v��I�HsIii����FE\q��諒*�-� f4� �5,�G�ZN׹� v��ql�#���G��=�|�t�q�U�$�¤�P��z7n�Ŗ)+RX���]� �5�;A�\ѕ��RBOݼ=����O����g�y�ˤ�f^�u8X-�fk�Zj�H�j��7��[uSr��]е��6,�M�ё�渐�iZjä�'d�\3�[�{��\���Б ��H���}㸡%�����i��R���U����P R!���?O�H u�[�Ok�C�=nŠ{O`�PO�+WN�YX�a�狍��5�+*|^����?Լ��n���I�v�vC�W�N�wh���u�6�^���H�� �`+UP������B?�+�n!"TFu�:;�*�ԴCxo,�q��&�4���ne>����L릏��#}���g�$�W�d����O�ZkC��;�г��;�dZ�aݶ�J`���=�c0���=��if����oٵ��Ӭs�. �sIk�X�=�0~#X:��q�yG�� Sh�[���u� -5i�GQ�E��вZE�Dq�ym��ਨߗ���+0��d����h:�|��F^�Qg�Ϡc\�a�^k�+�tz����f��U����q+ج�6F۱��h�Ɔ��'�Ayv�o���=��U�Y鹅��U�5��4{\ñ�->}�����##N��8x�sX�x�;��)�鯣�,��+g~�U�-9r!y�����~�>�h$e]��4^�9�qˎ�:l��Lb*�஻s�f,��ZL{Z�-�D%BH�R!*PN�j�)� �,X���D�.m,Œz�褕�[��:6WW$m�P�*U� �Ϊա�DJ,�J�!@�ZU�1VV�J� Hn��=Vq�KUa�*��U��aP�*���iCf��O�M��8��XK٘���S�=��lK��P ����,�ס"U�� �p�r#"3 #�J�>� $��,��ٚ�h!TB :����[���P���! 8"�!�M�T ��@�H�i;A��R���}��|�PaO)|�?Q����;#Оj�A2��kO�T�2�Cv o* �5����=��Axr��N3Qab�v��ඊ�N�����f��q��B��hWV��o��[p�B�U�`�F�YB��#��-4�p޳Ee٥c��ֶ�?j{QKќ����I�t��\e!�`����H�$��J��ؽ���q�.�|~_�˗�c�v�tf�k�b����iFKOgaܷ!���y�`��Nd� ���њe�Q��jy���������' ��|����Ci�T�)�"��PF�U�=��;�pۭ��u A�*2T!!!! �+I��v� �=D�`%$TBH� �񦲵t����K^�#�r;]�w��Y�lk&�Ĝ�㋜w�S�T>8�E�� ���FPIJ��M(�J�PR%B)r� p ��7�*D���;;8�_+}��?G�e�G��_�v(Ve~��}<���^�����`� �0�賭?Gv����s�m<׬ ��˔�f��^'i腽�ٞ�?�1�ɦ�*�a�<$�H��9��{�������T.��/�c�G�F4۫ܭ��K߳Ŏ���w�hV�����b�X�J�:5�ɟ,����$]�����߻|3x����y�+wG�p�%�V�����څ�r�~\�Q��%��չYѥ HH�*�1MS���Z�HJ��� P�6(�T))�@%H��!Q,L�h�q�P�U*˕U��<.��>#B�e ����:+�M���F��\��X� xK H¦SmK��֧,��[��,Rk�u��{.��5����@!@ �n?h�)Sm�x�(Zi�ܒ� VZB* Z��?/r?i���X0�"����t��y��F?N'��r\�.��c7UmN��a{ ���<�YF7 aZl'<�v�SO�w����ixރ^�v����޶}۽ҹ�Ci\J�^�:�h�g�5k,�>�X���/�ෂۅBBR�V���ɴV�� KLiN�]e#�@91�۷l�2�4�R�Ay�cuos�4.Y�|�"�\Mf����ku2��N<<�ޓ�?��H�ok#�&���@r ��(8���+N=ƴ4T묝�G%�ڨ}W���ݩ�NsH�Q5m��o|��ä́� ���ݑݚ�,V�L��5�9�c�����tn��\#2{�5�~T\98e�;z8��>�N��r�b� ��as#K6qB J������{��֣$#"�vYu^�YM��B�g��w��[�EB�@BHUEz�I��;@��H1�O�B���+Zi[C�?�w��`�B�{}���A�@7�P�@4���ɒ�r�d�D\Ƽ6[v�c�T V��s�*+te����Xk�r�f����������� hoXt��v{��{�q�Z|���)����-�y��� ����������鈕��)�� q:SQ$��5��8c�x���E�„l$� m/�J�"��Z�֙���1܆�oV�ު��N�J^+��z�:�����gY٭n�Vz���_�ӄ�+�����n��I,�[o����� Y��5��\m�b��1/cĮ��1� sh�I�Գ����.�Թw�n�K���Wڻ���XGS�:�\cv�-��%gYtV�&�v �rc��Gy[���U�5��.�4pc��M� �Fgvc h��G�FG�޹p۴u���۷kZ�V�������Q�u��S��ҧ�i����[��)~�ޏ_��Z�~>2��N���S?[O ��y�jk��8�lƮ|���#���T]lт'{�X��E�@{����c���dk:�M� ��|6Ԧb6QX��! �!*D��Ui�*�, R!eVXj�0�R�t�BsR�Q��FS��#=���}A]��Ϣٱ���w��%罽��QB� u��� -�x�(Zm}��ђ*��ڢ�9"Kȼ���q�q�-.<�W17q�����j�2V�������ǀ}��w�9��Nfh��ƃ̯?5�v�&ݭ����/�` g�<�Ȟ�qh�(�s��� �Q�M&~���q���.{ޱ;Gp�\J�N��z��G��}�:��Ē7���Ի+�i�(ro����6��(�RP`�4�����:�h�f� ��Z䫎� �-�g���8��~ �����q�ʮYLq�9,��Ӏ�FPǍݧ?2v-;4 ����$�gz��g m5�����V�c#Ŗ[�T�u=�YV�mq&�qZeb�08 w��RX�t�����mܝ�( iy��#0ѫ��֛M+��7X/�6��V�5�2�=�8�F Iߏ%cGC� ���м�������i�oX�M�aROy����vn.Y�����ol���f������ra��c�Ifsy����p���pW肼�e�w^�p��PT�N[�XY.���i��&�����8+V;[%e���� � Yi��vEH�é�� �S�0���+�Ll������i���M%�Xv:R+��^Y�@ޖ���!���Ni�/���4d��T$�@�M��ȣ�n�"��0斜������h�̔ޕ�i]u��%�7��� ����|�:���+xr���sϋ ���0�#�ˢ���@��,;�1�cZoґ���Z�WmV[�1�rD潍����o4���M֍�Ecv����_�q��g�(h��#� �X����A1a]s�3�U�,f�M�1��ch{��\��s�vF e��u���Q�7o�W.|򚩏���6� �ݩoi�P��p{Mx�,��@�flvGL�5βFe��ը5ִ����(��Ȭ�˖V���?�"�w�c��d��#�|�����GZ��9�vx��������/�X�+ a%��^>AX�[�ȥ�[�ȫy���x0�����D"7�q8��>��7��A sZ^{�n_-�ڇ�� �¸��'ZݾE'ZݾE\���j��a��= �kv�u���Wd� D�����$0ct1{�ɣd id���..�h$�p��YQ�<��hq���f�N�uQ\f�9]E���B\��<������ �V�e�ȠJݾEzdy�=7�n�"���|�!h�����ȣ�n�"�?Ih+5�Rx"�{�/��x�;L}��٤|S]Yb>=��W�u���Q}�|����n��΋�`�pVF�"��0�������+Mtf�k��]������Ϊ̇��$+�4�с�$��������y���HX�C����*�y�E�v+%H��R�$����Z�FBUWaP����~G���=�*�,BT�ZTX�෋5"�GjNs���R��A�'ih?����Ay��DB���X�ʏ?�!����Bm��Šz/�_ ���%���A�[��;����� N���